
ABSTRACT

This paper presents methods of generating compact pictorial sum-
marizations of video. By calculating a measure of shot impor-
tance video can be summarized by de-emphasizing or discarding
less important information, such as repeated or common scenes.
In contrast to other approaches that present keyframes for each
shot, this measure allows summarization by presenting only the
most important shots. Selected keyframes can also be resized
depending on their relative importance. We present an efficient
packing algorithm that constructs a pictorial representation from
differently-sized keyframes. This results in a compact and visu-
ally pleasing summary reminiscent of a comic book.

1. INTRODUCTION

A “shot” is a segment of video or motion image that is typically
contiguous in time and visual space. Many techniques exist to
automatically segment video into its component shots, typically
by finding large frame differences that correspond to cuts or shot
boundaries. In many applications it is desirable to automatically
create a summary of an existing video, motion picture or broad-
cast. Typically, this is done by segmenting video into shots, and
representing the entire video with a collection of keyframes, one
for each shot. In contrast, the system presented here abstracts
video by selectively discarding or de-emphasizing redundant
information. For example, repeated shots need not be included if
they are similar to shots already shown. We present a measure of
shot importance, given an existing segmentation. An immediate
application is printing a video summary, where frames from
important shots are printed, while those of lesser importance are
not. In our system, less important keyframes are printed in a
smaller size. A novel algorithm presented here efficiently packs
different-sized keyframes into a compact and visually pleasing
summary reminiscent of a comic book or Japanese manga.

2. RELATED WORK

Shahraray et al. at ATT Research have worked on using key-
frames for an HTML presentation of video [5]. One keyframe was
selected for each shot; uniformly sized keyframes laid out in a
column along closed-caption text. Taniguchi et al. have summa-
rized video using a 2-D packing of “panoramas” which are large
images formed by compositing video pans [6]. In this work, key-
frames were extracted from every shot and used for a 2-D repre-
sentation of the video content. Because frame sizes were not
adjusted for better packing, much white space can be seen in the
summary results. Yeung et al. have made pictorial summaries of
video using a “dominance score” for each shot [8]. Though they
work towards a similar goal, their implementation and results are
substantially different. The sizes and the positions of the still

frames are determined only by the dominance scores, and are not
time-ordered. Other tools have been built for browsing video con-
tent [1][2][7][9]. These do not attempt to summarize video but
rather present video content “as it is”. Therefore, keyframes are
typically extracted from every shot and not selected to reduce
redundancy. Frame presentation is basically linear, although some
approaches occasionally use other structures [2][7].

3. MEASURING SHOT IMPORTANCE

Many techniques exist to automatically segment video into its
component shots, typically by finding large frame differences that
correspond to cuts, or shot boundaries. Once detected, shots can
be clustered by similarity such that similar shots (e.g. similar
camera angles or subjects) are considered to be one shot or clus-
ter. For example, a film dialog where the camera repeatedly alter-
nates between two actors would typically consist of two clusters,
one for each actor. We use a hierarchical clustering method, where
initially each frame in the video (or a sub-sampled representation)
is assigned a unique cluster. The number of clusters is reduced by
iteratively merging the two closest clusters at each step, based on
the minimum distance between all combinations of the two clus-
ter member frames. To compare the distance between frames, a
number of techniques are available, such as the color-histogram
distances described in [3] or the transform-coefficient distance of
[4]. Hierarchical clustering results in a tree-structured representa-
tion such that individual frames are on the leaves of the tree. At
the root node of the tree is the maximal cluster consisting of all
the frames. The children of each node are the sub-clusters that
were merged to form the node, and so forth down to the leaves. If
the distance of the merged clusters is stored with each node, it can
be used to select a desired number of clusters by thresholding.
Setting a threshold distance below which frames are assumed to
be in the same cluster can adjust the number between one (the
root of the tree) and the number of frames (the leaves of the tree).
The optimal number of clusters depends on the type and length of
the video. Once clusters have been selected, each shot is labeled
with its corresponding cluster. Given C clusters in the video, a
measure of normalized weight Wi for cluster i is computed as

(1)

where Si is the total length of all shots in cluster i, found by sum-
ming the length of all shots in the cluster. Wi is the proportion of
shots from the whole video that are in cluster i.

A shot is important if it is both long and rare, that is, it does not
resemble most other shots. Thus weighting the shot length with
the inverse of the cluster weight yields a measure of shot impor-
tance. Thus the importance I of shot j (from cluster k) is

Wi

Si

Sj
j 1=

C∑
---------------------=

SUMMARIZING VIDEO USING A SHOT IMPORTANCE

MEASURE AND A FRAME-PACKING ALGORITHM
Shingo Uchihashi and Jonathan Foote

FX Palo Alto Laboratory
3400 Hillview Avenue
Palo Alto, CA 94304

{shingo, foote}@pal.xerox.com

(2)

where Lj is the length of the shot j.

The importance measure becomes larger if the shot is long, and
smaller if the cluster weight is large (meaning the shot is com-
mon). The balance of the contribution from the shot length and
the cluster weight can be adjusted by weighting the reciprocal of
Wi by a factor other than unity. Shot importance versus time for a
meeting video is shown in Figure 1.

4. A KEYFRAME PACKING ALGORITHM

The importance calculated for each shot can be thresholded to
select a desired number of shots, and hence frames for a pictorial
summary. Once frames have been selected, they may be laid out
in one or more dimensions to form a pictorial abstract of the video
sequence. Two dimensions might be most appropriate for a
printed synopsis, such as a “comic book” format. Thresholding
the importance score allows the desired number of frames to be
displayed at the appropriate level. To facilitate layout, frames may
be displayed in smaller or bigger sizes, depending on their impor-
tance score, and may be resized to best fit the available space.

Given that frames can be selected from shots, the layout problem
reduces to finding a sequence of frame sizes that both fills space
efficiently and represents the original video sequence well. It is
not hard to come up with an appropriate cost function to define a
degree of matching. However, it is difficult to find an optimal
sequence because the number of possible sequences increases
enormously with the size of the space.

Existing techniques such as Dynamic Programming (DP) and
greedy algorithms can be used to find an optimal or near-optimal
layout. A greedy approach is simple, yet often fails to produce a
good result. The DP algorithm is guaranteed to find the optimal
solution for this kind of problem, but there is no need to optimize
the layout over the entire video. We present a packing algorithm
that is simpler to apply than DP yet provides a much better layout
than a purely greedy strategy.

The algorithm can be described as “block exhaustive” as it selects
the best sequence of frames to pack a particular “block” or sub-

region of the entire space. The best sequence is found by explor-
ing all combinations of layouts for a particular block. Because
blocks are relatively small, this does not result in a combinatorial
explosion and an optimal layout can be easily found using a plain
tree search.

The space to be packed is divided into a grid, such that one unit of
the grid will hold the smallest frame. This is used to lay out
frames as follows. One “row block”, or row of columns across the
grid, is packed at a time. The matching score for a block varies
with its height. The height for a particular block is set to the one
that yields the best packing as determined by the packing score.
Once a row block as been packed with frames, further row blocks
are considered iteratively until all frames have been packed.

Given:

• A sequence of frame sizes f1, f2, …, fN, expressed as
multiples of the smallest frame size. This is determined
from the shot importance score as above. fi takes one of
K values {s1, s2, …, sK}.

• The allowable range of block row heights, as M values
{ r1, r2, …, rM} and the block width to the fixed value W.

• A function c(x, y) which is the cost of placing frame of
size x in available remaining space of size y. A typical
cost function might be the size difference between x and
y. Any arbitrary cost function can be used.

• A space-filling rule. A typical rule might be column-
major, that is from top to bottom and left to right. This is
the order in which frames will be preferentially packed.

Given the above, the packing algorithm consists of three nested
loops that optimize the packing for one row block as described
below.

1. Set starting frame s to 1.
2. Set row height r to one of M values, {r1, r2, …, rM}

3. Find all frame sequences {q1, q2, …, qLr} that fit the
“row block”.

4. From the above sequences, find a sequence ql of length
nl which fits a portion of the original sequence between s
and s + nl, where fi indicates ith frame size of the original
sequence. qij is the jth element of sequence qi. wi is an
additional weighting factor which is determined by
remaining space

(3)

5. Repeat 2 through 4 to find the best row height r and cor-
responding sequence q of length n. This is the optimal
packing for this row block.

6. Increase s by n.
7. Repeat 2 to 6 until s reaches N, the length of the original

sequence (all frames are packed).

Step 2 above is done by 1) exhaustively generating all sequences
of length from 1 to r x W whose jth element is one of K values {s1,
s2, …, sK}, and 2) eliminating all generated sequences that do not
fit the “row block.” For example, if the block height is 2,
sequences containing a 3 element do not fit, or if the block width
W is 8 and the maximum row height is 3, sequences of all 3s
longer than 3 do not fit. Though there are a possible (r x W)K

Ij Lj
1

Wk
-------log=

Figure 1. Shot importance versus shot number

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

segment #

sc
or

e

l
1
ni
---- c fs j 1–+ qij,() wi+

j 1=

ni

∑

i
minarg=

sequences to consider, r, W, and K are very small so efficiency is
not a great concern.

An example of this “row block” packing procedure is depicted in
Figure 2. The rectangles at the top are the original frame
sequence, sized by importance. The bottom picture illustrates the
frames packed into a row block of height 3 and width 8. Note that
the size of frame 5 has been increased from the original (indicated
as a gray rectangle) for a better packing with minimal white
space.

5. EXPERIMENTS

We have tested the above algorithm on a corpus of videotaped
staff meetings, though it should work on any video type. Space
permits a presentation of only one example result. The source
video is approximately 50 minutes long and consists of 49 shots,
counting between actual camera changes. Still frames were
extracted from the video every 5 seconds, and were clustered into
51 clusters using the Euclidean distance between high-variance
DCT coefficients as a distance metric [4]. Occasionally, frames
from the same shot were segregated to different clusters because
of large changes such as camera motion or changes in room light-
ing. As a result, the entire video was clustered into 92 segments.
For each segment, an importance measure was calculated based
on its length and cluster weight as described above.

Video segments having high importance scores were chosen to
generate a still synopsis. Segments scoring higher than 1/8 of the
maximum score were selected. For each segment chosen, the
frame nearest the segment mean was extracted as a representative
keyframe, again using the Euclidean distance of reduced DCT
coefficients. Frames were sized according to the importance mea-
sure of their originating segments, so higher importance frames
were larger. In our experiment, if the importance of a given frame
was between 1/8 and 1/4 of the maximum, it was assigned the
smallest frame size. Frames scoring more than 1/4 but less than 1/
2 of the maximum were sized twice the smallest size, and frames
scoring higher than 1/2 were sized three times larger than the
smallest. In the case of our sample video, the number of extracted
frames of size 1, 2, 3 were 9, 13, and 2 respectively. We have cho-
sen a straightforward assignment of frame sizes to importance
scores; many other assignments, including continuously variable
sizes, are possible. The result of the packing algorithm is shown
in Figure 3. The sizes of only six frames out of 24 needed adjust-
ment for this packing.

6. CONCLUSIONS

This paper has introduced a shot importance measure and shown
its application to video summarization. The importance score was
used to assign sizes to keyframes extracted from video shots A
algorithm for efficiently packing different-sized keyframes was
presented and demonstrated to be effective.

We are interested using other information in the importance cal-
culation. One good factor is the magnitude of the change that
starts the shot, computed as the difference of the color histogram,
pixel difference, or transform coefficient difference. Including
this would decrease a shot's importance if it is not greatly differ-
ent from the preceding shot.

A particularly valuable enhancement might be to preferentially
weight certain shot categories. For example close-ups of a person
might be preferable to wide crowd shots. Our importance value
can be easily modified to reflect this kind of information, for
example as produced by a face-detection algorithm.

7. ACKNOWLEDGMENTS

Thanks to John Doherty for producing the meeting videos in our
corpus.

8. REFERENCES

[1] Aigrain, P., Joly, P., and Longueville, V., “Medium Knowl-
edge-Based Macro-Segmentation of Video into Sequences,”
Intelligent Multimedia Information Retrieval, AAAI Press/
The MIT Press, pp. 159--173, 1997.

[2] Arman, F., Depommier, R., Hsu, A., Chiu, M.-Y., “Content-
based Browsing of Video Sequences,” Proc. ACM Multime-
dia 94, San Francisco, October 1994, pp. 97--103.

[3] Boreczky, J. and Rowe, L., “Comparison of Video Shot
Boundary Detection Techniques,” Proc. SPIE Conference on
Storage and Retrieval for Still Image and Video Databases
IV, San Jose, CA, February, 1996, pp. 170--179.

[4] Girgensohn, A., and Foote, J., “Video Frame Classification
Using Transform Coefficients,” Submitted to ICASSP-99.

[5] Shahraray, B. and Gibbon, D. C., “Automated Authoring of
Hypermedia Documents of Video Programs”, Proc. ACM
Multimedia 95, San Francisco, November, pp. 401--409,
1995.

[6] Taniguchi, Y., Akutsu, A., Tonomura, Y., “PanoramaEx-
cerpts: Extracting and Packing Panoramas for Video Brows-
ing”, Proc ACM Multimedia 97, pp. 427--436, 1997.

[7] Yeo, B-L., and Yeung, M., “Classification, Simplification
and Dynamic Visualization of Scene Transition Graphs for
Video Browsing,” Proc. IS&T/SPIE Electronic Imaging ’98:
Storage and Retrieval for Image and Video Databases VI.

[8] Yeung, M., and Yeo, B-L., “Video Visualization for Compact
Presentation and Fast Browsing of Pictorial Content,” IEEE
Trans. Circuits and Sys. for Video Technology, Vol. 7, No. 5,
pp. 771--785, Oct. 1997.

[9] Zhang, H. J., Low, C. Y., Smoliar, S. W. and Wu, J. H.,
“Video Parsing, Retrieval and Browsing: An Integrated and
Content-Based Solution,” Proc. ACM Multimedia 95, San
Francisco, November 1995, pp. 15--24.

Figure 2. Packing keyframes into a row block

1

2
3

4
5

1
3 5

2 4

Figure 3. Result of keyframe selection, resizing, and automatic layout

