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ABSTRACT

This paper presents a method of rapidly determining
speaker identity from a small sample of speech, using a
tree-based vector quantiser trained to maximise mutual
information (MMI). The method is text-independent and
new speakers may be rapidly enrolled. Unlike conventional
hidden Markov model approaches, this method is com-
putationally inexpensive, yet is robust even with only a
small amount of test data. Thus speaker identification is
rapid in terms of both computational cost and the small
amount of test speech necessary to identify the speaker.
This paper presents theoretical and experimental results,
indicating that perfect ID accuracy may be achieved on
a 15-speaker corpus using little more than one second of
text-independent test speech.

1. INTRODUCTION

Automatically determining the identity of a speaker is an
important application of speech recognition technology. Be-
sides the obvious security and verification applications,
speaker identification (ID) technology can improve speech
recognition accuracy by selecting speaker-dependent mod-
els [1] and can also be used to segment audio and video for
multimedia applications [2].

Most recent speaker identification work has centered on
continuous-density hidden Markov models.  This paper
presents an alternative discrete method, which, because it
is trained discriminatively, can capture the differences be-
tween talkers without the need for the Viterbi decoding
stage of HMM methods.

Unlike K-means vector quantisation (VQ), the tree-based
quantisation is supervised, which means the feature space
may be profitably discretized into many more regions than
the conventional minimum-distortion vector quantisers. In
addition, the tree-based method is arguably more robust in
high-dimensional feature space, and may be pruned to vary
the number of free parameters to better reflect the amount
of available enrolment data. Perhaps more importantly,
MMI-constructed trees can arguably handle the “curse of
dimensionality” better than a minimum-distortion VQ, in
part because only one dimension is considered at each split.
Dimensions that do not help class discrimination are ig-
nored, in contrast to a distortion metric which is always
computed across all dimensions.

In practice, the speaker identification system works as
follows. Both test and enrolment speech is first parame-
terised into mel-scaled cepstral coefficients (MFCCs) plus
an energy term. The speech waveform, sampled at 16 kHz,
is thus transformed into a 13-dimensional feature vector
(12 MFCC coefficients plus energy) at a 100-Hz frame rate.
This parameterisation has been shown to be quite effective
for speech recognition and speaker 1D, even though some
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speaker-dependent characteristics (such as pitch) are dis-

carded.

A quantisation tree is grown off-line, using training data
from as many speakers as practicable. Such a tree is es-
sentially a vector quantiser; discriminative training ensures
that it attempts to label feature vectors from different
speakers with a different label. To enrol a reference speaker
for subsequent identification, enrolment data is quantised,
and a probability density function (pdf) is estimated by
counting the relative frequencies of each label. This pdf
serves as a reference template with which unknown speak-
ers may be compared.

To identify an unknown speaker, a pdf is computed from
quantised test data in a similar manner. This test template
can be compared with those from the reference speaker us-
ing one of any number of distance measures; the “closest”
reference template then identifies the unknown speaker. For
speaker verification tasks, (i.e. the speaker may not be in
the training set), a distance threshold may be set to re-
ject speakers that do not sufficiently resemble any reference
model.

1.1. Supervised MMI Trees for Quantisation

The feature space is partitioned into a number of discrete
regions (analogous to the Voronoi polygons surrounding VQ
reference vectors) by a decision tree. Unlike K-means ref-
erence vector estimation, the tree is grown in a supervised
fashion. Each decision in the tree involves comparing one el-
ement of the vector with a fixed threshold, and going to the
left or right child depending on whether the value is greater

or lesser. Each threshold is chosen to maximise the mutual
information (X ; C) between the data X and the associated

class labels C' that indicate the speaker that generated each
datum.

1.2. Tree Construction

Because the construction of optimal decision trees is NP-
hard, they are typically grown using a greedy strategy [3].
The first step of the greedy algorithm is to find the decision
hyperplane that maximises the mutual information metric.
While other researchers have searched for the best general
hyperplane using a gradient-ascent search [4], the approach
taken here is to consider only hyperplanes normal to the
feature axes, and to find the maximum mutual informa-
tion (MMI) hyperplane from the optimal one-dimensional
split. This is computationally reasonable, easily optimised,
and has the advantage that the search cost increases only
linearly with dimension.

To build a tree, the best MMI split for all the training
data 1s found by considering all possible thresholds in all
possible dimensions. The MMI split threshold is a hyper-
plane parallel to all feature axes except dimension d, which
it intercepts at value t. This hyperplane divides the set of
N training vectors X into two sets X = {Xa, Xb}, such
that
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Figure 1. VQ (left) and MMI tree (right) feature space partitions.

Xa: x4>tq (1)

Xb: zg<tq (2)
This first split corresponds to the root node in the classifica-
tion tree. The left child then inherits Xb, the set of training
samples less than the threshold, while the right child inher-
its the complement, Xa. The splitting process is repeated
recursively on each child, which results in further thresholds
and nodes in the tree. Each node in the tree corresponds
to a hyper-rectangular region or “cell” in the feature space,
which is in turn subdivided by its descendants. Cells cor-
responding to the leaves of the tree completely partition
the feature space into non-overlapping regions, as shown in
Figure 1.
To calculate the mutual information I(X; C) of a split,

consider a threshold ¢ in dimension d. The mutual infor-
mation from the split is easily estimated from the training

data in the following manner. Over the volume of the cur-
rent cell, count the relative frequencies:
Ni;; = Number of data points in cell j from class ¢

N; = TTotal number of data points in cell 3
- o

A, = Number of data points from class ¢ : x4 > t4
In the reglon of cell j, define Pr(c;) to be the probablhty
of class ¢ and Pr(a ) as the probability that a member of
class ¢ is above the given threshold. These probabilities are
easily estimated as follows:

N;

Pr(ci) =~ Nj (3)
A

Pr(a;) =~ N (4
ij

With these probabilities, the mutual information given the
threshold may be estimated in the following manner (for
clarity of notation, conditioning on the threshold is not in-

dicated):
[(X;C) = H(C) -

:—ZPr )H, (Pr(a;))  (6)

_ Z g 1 U H2 ( ) , (7)
Nij
where H; is the binary entropy function
Hi(z) = —zlog,(a) — (1 —2)log,(1—x).  (8)

Equation 7 is a function of the (scalar) threshold ¢, and
may be quickly optimised by a region-contraction search.

H(CIX) (5)

—|—ZPr
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Figure 2. Fraction of mutual information by feature.

This splitting process is repeated recursively on each
child, which results in further thresholds and nodes in the
tree. At some point, a stopping rule decides that fur-
ther splits are not worthwhile and the splitting process is
stopped. The MMI criterion works well for finding good
splits, but 1s a poor stopping condition because it is gen-
erally non-decreasing. (Imagine a tiny cell containing only
two data points from different classes: any hyperplane be-
tween the points will yield an entire bit of mutual infor-
mation. Bigger cells with overlapping distributions gener-
ally have less mutual information.) Also, if the number of
training points in a cell is small, the probability estimates
for that cell may be unreliable. This motivates a stopping
metric where the best-split mutual information is weighted
by the probability mass inside the cell {; to be split:

stop(ly) = (32) L(X:0) (9)

where N is the total number of available training points.
Further splits are not considered when this metric falls be-
low some threshold. This mass-weighted MMI criterion thus
insures that splitting is not continued if either the split cri-
terion is small, or there is insufficient probability mass in
the cell to reliably estimate the split threshold.

1.3. Dimensional Importance

An interesting side-effect of tree construction is that the
relative importance of feature-space dimensions can be es-
timated. The maximum mutual information given by a split
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Figure 3. Speaker distance matrix (darker = closer)

in a particular dimension will depend on how well the fea-

ture values are correlated with the class labels. The relative
“importance” of each feature may then be judged by looking

at its contribution to the total mutual information. Figure
2 shows the fraction of mass-weighted mutual information
given by each dimension for a tree grown on the speech data
of Section 3. The relative importance of 12 mel-cepstral co-
efficients, log energy, and differences thereof are plotted,
with the differential values indicated by a dotted horizon-
tal line. Figure 2 shows clearly that the energy and pri-
mary cepstral features are most important. Unlike speech
recognition, the higher-order cepstral features are impor-
tant as they are dependent on fine spectral shape and thus
vocal tract and pitch differences that characterise speak-
ers. Though the differenced parameters are important for
speech recognition, they are much less necessary for identifi-
cation, and could probably be eliminated without affecting
identification performance.

2. TREE-BASED TEMPLATE GENERATION

The tree partitions the feature space into L non-overlapping
regions or “cells,” each of which corresponds to a leaf of the
tree. For speech recognition, the tree may be used as a
vector quantiser front-end for a discrete HMM system [5].
For the speaker identification experiments described here,
the system is used as a simple vector quantiser.

Given an amount of speech data from a particular
speaker, the ensemble of leaf probabilities from the quan-
tised data will characterise that speaker. A second of un-
known speech will result in 100 feature vectors (ignoring
edge effects), and thus 100 different leaf labels. If a his-
togram is kept of the leaf probabilities, such that if, say, 14
of the 100 unknown vectors are classified at leaf j then leaf 5
is given a value of 0.14 in the histogram. The resulting his-
togram uniquely classifies a speaker, regardless of whether
the speaker was used for tree construction.

Given speech from an unknown speaker, a similar his-
togram may be estimated and compared with stored tem-
plates from the reference speaker. The closest matching
template then identifies the unknown speaker. Though it is
not obvious how to choose an appropriate distance measure
to compare the templates, simple approaches work well. For
the experiments presented here, the Euclidean distance be-
tween the two templates is used, as it is closely related to
to the yv? measure. Related work has also used symmetric
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Figure 4. Speaker ldentification Accuracy vs. Test Speech

relative entropy as a distance measure [1].

Because of the large span of the template histogram (2024
entries), many counts will be zero, especially for the very
short lengths of test data used in the experiments. Addi-
tionally, the most populous histogram entries will be those
corresponding to silence. Since neither zero-count labels nor
silence labels help to discriminate between talkers, the dis-
tance measure is computed only between moderately pop-
ulated histogram entries. This is done by sorting the his-
togram computed by summing all the reference templates,
and finding the third through the 303rd largest entries. All
other entries are are ignored in the distance measure.

3. EXPERIMENTS

A subset of the VMRI1 corpus was used for both enrolment
and test data [6]. Each of the 15 speakers (11 male and
4 female) provided several read utterances There were fif-
teen speakers, of which 11 were male and 4 female. Data

was recorded at 16 kHz from a Sennheiser HMD 414 close-
talking microphone in an acoustically quiet room. FEach

speaker read several sentences from the TIMIT corpus,
which was designed to be phonetically rich (though the
amounts of data used here are far too small to cover all
phone articulations).

Forty-five utterances (three sentences from each of the 15
speakers) were used to train the quantisation tree, a total of
195 seconds of data. Training data was labeled with silence
and the particular speaker, using an existing HMM system
[7]. The resulting tree had 2024 leaves (thus possible output
labels).

Ten sentences from each speaker was used for enrolment
data; an average of 41 seconds per speaker (of which a sig-
nificant amount was silence). Reference templates were gen-
erated for each of the fifteen speakers using the tree and the
methods of Section 2..

Ten different sentences from each speaker were used as
test data, again, about 40 seconds per speaker. This re-
sulted in ten test templates. The Euclidean distance was
computed between each test and reference template; in all
cases the distance to the same-speaker reference template
was smaller than any intra-speaker distance. Thus the dis-
tance metric used for speaker identification results in 100%
identification accuracy on this test set. Figure 3 displays
the speaker distance matrix graphically. The intersection
of row ¢ and column j represents the distance between the



speaker ¢ reference template and the speaker j template;
the darker the element the more distant the speaker. The
closest distances in a column are clearly on the diagonals,

which are the distances between the test and reference mod-
els from the same speakers.

A useful speaker identification system should require only
a small amount of test data. However, identification error
will increase as the amount of test speech shrinks, because
many relative frequencies will be zero, and others will be un-
reliable because of insufficient data. To investigate the iden-
tification accuracy as a function of available test data, the
same 15-speaker experiment was performed but the amount

of data available for the test models was varied from 0.5 to
2 seconds, as shown in Figure 4. Note that identification ac-

curacy is perfect using substantially less than two seconds
of test speech; even with one-half second of speech, only
two speakers are incorrectly identified (random identifica-
tion would result in fourteen misclassifications).

4. CONCLUSIONS

A rapid and effective method for speaker identification has
been presented. Though this method shows promise, more
work must be done. Experiments on a larger corpus (such
as the YOHO corpus specifically designed for speaker 1D
work) would show that the method is robust to bigger user
populations. In addition, experiments with speakers not in
the enrolment set should be performed.

These experiments show that useful identification can be
performed with a surprisingly small amount of data. Even
with only half a second of test data, 13 of the 15 speak-
ers were correctly identified. More sophisticated distance
measures, especially rank-based metrics which may be more
robust to sparse data, should allow rapid running speaker
identification; for example to locate new speakers in an au-

dio soundtrack. . o
large motivation for using MFCC parameterisation for

speech recognition is because the resulting features are rea-
sonably uncorrelated. Because the tree quantiser can use-
fully model correlation, it may be possible to find parame-
terisations that better capture speaker-dependent features,
especially when the importance of additional features can
be judged by the tree.
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