DISCRETE MMI PROBABILITY MODELS FOR HMM SPEECH RECOGNITION

J. T. Foote
Cambridge University Engineering Department, Cambridge CB2 1PZ, UK

ABSTRACT

This paper presents a method of non-parametrically mod-

eling HMM output probabilities. Discrete output proba-
bilities are estimated from a tree-based MMI partition of
the feature space, rather than the usual vector quantiza-
tion. Omne advantage of a decision-tree method is that
very high-dimensional spaces can be partitioned. Time
variation can then be explicitly modeled by concatenating
time-adjacent vectors, which is shown to improve recogni-
tion performance. Though the model is discrete, it provides
recognition performance better than 1-component Gaussian
mixture HMMs on the ARPA Resource Management (RM)
task. This method is not without drawbacks: because of
its non-parametric nature, a large number of parameters
are needed for a good model and the available RM training
data is probably not sufficient. Besides the computational
advantages of a discrete model, this method has promising
applications in talker identification, adaptation, and clus-
tering.

1. INTRODUCTION

Most recent speech recognition work has centered on
continuous-density hidden Markov models, which have
shown a clear performance advantage over discrete-output
HMDMs. This paper presents an alternative: a discrete out-
put probability model that is comparable with (but does not
exceed) the performance of a standard Gaussian mixture
HMM recognition system. Unlike K-means vector quan-
tization (VQ), the tree-based quantization is supervised,
which means the feature space may be profitably discretized
into many more regions than the conventional minimum-
distortion vector quantizers. In addition, the tree-based
method is arguably more robust in high-dimensional fea-
ture space. This is exploited by concatenating adjacent
feature vectors, resulting in a high-dimensional space which
contains information about the time dependence of the fea-
tures.

1.1. Tree Output Probability Models for Speech

The feature space is partitioned into a number of discrete
regions (analogous to the Voronoi polygons surrounding VQ
reference vectors) by a decision tree. Unlike K-means ref-
erence vector estimation, the tree is grown in a supervised
fashion. Each decision in the tree involves comparing one el-
ement of the vector with a fixed threshold, and going to the
left or right child depending on the outcome. Each thresh-
old is chosen to maximize the mutual information I(X;C)
between the data X and the associated class labels C' (ob-
tained from Viterbi alignment) that indicate the acoustic

class of each datum.

1.2. Tree Construction

Because the construction of optimal decision trees is NP-
hard, they are typically grown using a greedy strategy [1].
The first step of the greedy algorithm is to find the decision
hyperplane that maximizes the mutual information metric.
While other researchers have searched for the best general
hyperplane using a gradient-ascent search [2], the approach
taken here is to consider only hyperplanes normal to the
feature axes, and to find the maximum mutual information
(MMI) hyperplane from the optimal one-dimensional split.
This is computationally reasonable, easily optimized, and
has the advantage that the search cost increases only lin-
early with dimension.

To build a tree, the best MMI split for all the training
data is found by considering all possible thresholds in all
possible dimensions. The MMI split threshold is a hyper-
plane parallel to all feature axes except dimension d, which
it intercepts at value ¢. This hyperplane divides the set of
N training vectors X into two sets X = {Xa, Xb}, such
that

Xa: xq4>14 (1)
Xb: za<ty (2)

This first split corresponds to the root node in the classifica-
tion tree. The left child then inherits Xb, the set of training
samples less than the threshold, while the right child inher-
its the complement, Xa. The splitting process is repeated
recursively on each child, which results in further thresholds
and nodes in the tree. Each node in the tree corresponds
to a hyper-rectangular region or “cell” in the feature space,
which is in turn subdivided by descendants. Cells corre-
sponding to the leaves of the tree completely partition the
feature space into non-overlapping regions, as shown in Fig-
ure 1.1..

To calculate the mutual information I(X;C) of a split,
consider a threshold ¢ in dimension d. The mutual infor-
mation from the split is easily estimated from the training
data in the following manner. Over the volume of the cur-
rent cell, count the relative frequencies:

N;; = Number of data points in cell j from class ¢
N; = Total number of data points in cell j
- TN
A; = Number of data points from class i : x4 > tqg

In the region of cell j, define Pr(c;) to be the probability
of class ¢ and Pr(a;) as the probability that a member of

+
n
+ o+ A
+ A A
oA+
@/ &
/
n
L A8
e
@ st
+
h
* +

+
+ o4 A
+ A
o+
A A
+
+
AD
AD A
AFAT T
A++++$
+
)
h
* +

Figure 1. VQ (left) and MMI tree (right) feature space partitions.

class i is above the given threshold. These probabilities are
easily estimated as follows:

Ny

Pr(c;) = N? (3)
J
A;

Pr(a;) = N (4)
ij

With these probabilities, the mutual information given the
threshold may be estimated in the following manner (for
clarity of notation, conditioning on the threshold is not in-
dicated):

I(X:0) = H(C) - H(C|X) (5)

=- ZPr ci) log, Pr(ci) + ZPI‘ ci)Hz (Pr(ai)) (6)

Y e ey (). o

where H> is the bmary entropy functlon
Ha(z) = —zlogy(z) — (1 = 2)logy(1 =) (8)

Equation 7 is a function of the (scalar) threshold ¢, and may
be quickly optimized by a region-contraction search.

This splitting process is repeated recursively on each
child, which results in further thresholds and nodes in the
tree. At some point, a stopping rule decides that fur-
ther splits are not worthwhile and the splitting process is
stopped. The MMI criterion works well for finding good
splits, but is a poor stopping condition because it is gen-
erally non-decreasing. (Imagine a tiny cell containing only
two data points from different classes: any hyperplane be-
tween the points will yield an entire bit of mutual infor-
mation. Bigger cells with overlapping distributions gener-
ally have less mutual information.) Also, if the number of
training points in a cell is small, the probability estimates
for that cell may be unreliable. This motivates a stopping
metric where the best-split mutual information is weighted
by the probability mass inside the cell /; to be split:

stop(ty) = () 1(X:0) ©)

where N is the total number of available training points.
Further splits are not considered when this metric falls be-
low some threshold. This mass-weighted MMI criterion thus
insures that splitting is not continued if either the split cri-
terion is small, or there is insufficient probability mass in
the cell to reliably estimate the split threshold.

0.3

0.25

0.2

primary => ——

differential => |----

0.1

Fraction of Total Mutual Information
o
=
o

0.05

112 =

1 2 3 4 5 6 7 8 9 10 11 12 E
Cepstral Coefficient (E = log energy)

Figure 2. Fraction of mutual information by feature.

1.3. Dimensional Importance

An interesting side-effect of tree construction is that the
relative importance of feature-space dimensions can be es-
timated. The maximum mutual information given by a split
in a particular dimension will depend on how well the fea-
ture values are correlated with the class labels. The relative
“importance” of each feature may then be judged by looking
at its contribution to the total mutual information. Figure
2 shows the fraction of mass-weighted mutual information
given by each dimension for a tree grown on the RM data of
Section 3. The relative importance of 12 mel-cepstral coeffi-
cients, log energy, and differences thereof are plotted, with
the differential values indicated by a dashed horizontal line.
Figure 2 shows clearly that the energy, delta energy, and
low-order cepstra are the most important features. These
results are in good agreement with those of Bocchieri and
Wilpon [3].

2. TREE-BASED QUANTIZATION

The tree partitions the feature space into L non-overlapping
regions or “cells,” each of which corresponds to a leaf of
the tree. For speech recognition, the tree may be used as
a vector quantizer front-end for a discrete HMM system.
The HMM output probability model therefore consists of
discrete probabilities p; (i), the probability that the output

Input Vectors
| o1 | o

Decision
Tree

lj

|01 |

Leaf Lookup j

'

Pr(, o =5)

Figure 3. Contextual input to decision tree.
of HMM state s; is a vector falling in leaf ;.

2.1. Estimating Tree Probabilities

HMM output probabilities may be estimated from the
Baum-Welch algorithm as well as from Viterbi training
(used in the experiments presented later). Given Viterbi-
aligned data and a decision tree, it is straightforward to
count N;;, the number of data points from state s; (i.e. the
number of observation vectors aligned with state s;) that
wind up in leaf [;. From this, the conditional probability of
an output falling in leaf node I; given the state s; may be
estimated as
N. .

a ~ k¥}
pj (2) Z]' Ni; .

Thus the tree output probabilities can be quickly estimated
by Viterbi-aligning novel data and counting the relative fre-
quencies at each leaf. In practice, limited training data
leads to zero N;j counts for many ¢ and j. In this case,
p;(i) values of zero are set to some small floor value and
the ensemble is renormalized.

(10)

2.2. Tree Models for Speech

Tree-based vector quantizers have some interesting advan-
tages over conventional vector quantizers. Perhaps most im-
portantly, MMI-constructed trees can arguably handle the
“curse of dimensionality” better than a minimum-distortion
VQ, in part because only one dimension is considered at
each split. Dimensions that do not help class discrimina-
tion are ignored, in contrast to a distortion metric which is
always computed across all dimensions.

An immediate application is that inter-frame time vari-
ation can be explicitly modeled by concatenating several
adjacent observation vectors, as shown schematically in Fig-
ure 3. Though this drastically increases the feature space
dimensionality, it is found to significantly improve the per-
formance of a tree-based HMM recognition system.

Another advantage is that trees are easily pruned to the
desired size, allowing the number of free parameters (pro-
portional to the number of leaves) to be tailored to the
problem. Where data is sparse (as in talker ID), smaller

trees are more robust to undertraining, though the result-
ing model is coarser. Conversely, where data is plentiful (as
in the recent Wall Street Journal corpora), the tree model
may be made extremely detailed, as the computational cost
increases only logarithmically with the number of leaves.

Another way to simplify high-dimensional problems is to
use overlapping trees. In a manner similar to using multiple
“codebooks,” multiple trees may be grown independently
for lower-dimensional subsets of the feature space. Output
probabilities are then computed as the product of the tree
probabilities. These will be underestimated if the subspaces
are not truly independent, but this is usually outweighed by
the higher spatial resolution obtainable (it increases expo-
nentially with the number of overlapping trees).

2.3. Model Parameter Requirements

A drawback of non-parametric models is that they typi-
cally require more training data and parameter storage than
comparable parametric models. For comparison, let S be
the number of model states, M be the number of mixture
components in a Gaussian-mixture model, D be the dimen-
sionality of the feature space, and L the number of leaves,
and T the number of overlapping trees (equivalent to the
number of streams or codebooks.)

Using the values from the HTK models of section 3., D
is 39 and M varies from 1 to 15. Assuming diagonal covari-
ance matrices, a continuous density HMM output probabil-
ity model requires roughly 2M D.S parameters. Ignoring the
M S mixture weights, this is from 78 to 1170 parameters per
state. Comparatively, tree models need LTS parameters
(ignoring the size of the trees themselves which is O(L)).
For the trees used here, L ranges from 1024 to 4096 and T’
is 2, so each state requires from 2048 to 8192 parameters.
Note that this is independent of D, the feature space di-
mension. Thus trees require roughly an order of magnitude
more parameters than comparable Gaussian models.

3. RECOGNITION EXPERIMENTS

The HTK recognition system was used as a baseline for the
tree experiments presented here. All models were trained
with the RM SI-109 training set (3990 sentences) and eval-
uated on the speaker independent October 89 test set, us-
ing the the standard RM word-pair grammar. For all ex-
periments, 48 3-state monophone models were used, aug-
mented with an optional 1-state inter-word silence model
and function-word specific phone models for the 32 most
common words in the RM training data, as in [4].

Tree models were “bootstrapped” by growing and train-
ing them on data aligned with the 10-mixture monophone
and function word models. Tree models were grown on
a subset of the SI-109 training set consisting of two sen-
tences from each speaker. Once grown, the output prob-
ability models were trained on the entire SI-109 set. This
is essentially one iteration of Viterbi training. Trees were
constructed using context windows of 1, 3, 5, and 7 adja-
cent vectors. The feature space was 12 mel-frequency cep-
stral coefficients and log energy, and the first differential of
each, for a 26-dimensional feature space. This was (some-
what arbitrarily) divided into two 13-dimensional subspaces
containing the primary and differential parameters respec-
tively; two separate trees were grown for each subspace.

4. RESULTS AND ANALYSIS

Figure 4 shows the effect of adding vectors to the context
window, for a tree size of 1024 leaves. It is clear that the ad-
ditional information provided by the context helps recogni-

20

18 b

Word Error (%)
= = = =
o N S (<))
T T T T
L L L L

®
T
I

0 | | | |
10 30 50 70
Included Context (mS)

Figure 4. Word error vs. context (1024-leaf tree).

tion performance, even while using the first-differential pa-
rameters. Because of the many different contexts that are
tied in a monophone system, the explicit context modeling
is not as effective as it could be in system using context-
dependent triphone or word-level models. Experiments on a
small-vocabulary word-model system [5] show optimal per-
formance with longer context windows of 70 to 90 millisec-
onds.

Figure 5 shows the word error rate versus tree size for a
context window of 50 ms (5 adjacent vectors). It is clear
that the larger tree models are substantially undertrained,
because the vast majority of the N;; counts are zero. More
speculatively, the fact that larger tree sizes (more detailed
models) do not result in better performance could be due to
lack of sufficient training data. The need for large amounts
of training data is a serious drawback of non-parametric
models in general and the tree models in particular. The
problem is not insurmountable; several methods are be-
ing investigated to extract better model estimates from the
training data:

e Only one iteration of Viterbi training was used for the
tree models. More iterations would improve the overall
model likelihood,

e Viterbi training was used primarily for simplicity.
Baum-Welch training might make better use of the lim-
ited training data, because it results in probabilistic
rather than the zero-one state assignments from the
Viterbi training.

e No states were tied. The divergence (relative entropy)
between the discrete HMM output probabilities can
be computed and used as a distance measure; simi-
lar states can then be tied, reducing the number of
parameters to be estimated.

5. CONCLUSIONS

The smallest word-error rate of 12.4% was achieved with
1024-leaf trees using 30 ms context windows. For com-
parison, the HTK CD monophone system (using identical
model topology and data) yielded a 17.3% error rate for
1-mixture monophone models and 11.3% obtained with 2-
mixture monophone models. Obviously, this tree-based sys-
tem is not competitive with the ultimate 15-mixture mono-

[N
®

= IS B =
o N} S)
T T T T
I I I I

Word Error (%)
00
T
|

.
500 1000 1500 2000 2500 3000 3500 4000 4500
Tree Size (leaves)

Figure 5. Word error vs. tree size (50-ms context).

phone models, which resulted in a 5.7% error rate. This is
almost certainly due to the lack of sufficient training data.
The tree models presented here are not yet competitive
with the best CD models, yet they have advantages that
may outweigh this. Tree models may be trained quite
rapidly on novel data by Viterbi-alignment and relative
frequency estimation. This has been shown to be useful
for talker adaptation and identification [7]. Also, because
the tree models may be made extremely detailed at little
additional cost, they may find applications in large-corpus
speech recognition experiments such as Wall Street Journal,
where there is sufficient data to train them properly.

6. ACKNOWLEDGEMENT

The author thanks Phil Woodland and Steve Young for the
continuous-density RM models and use of the HTK recog-
nition software.

REFERENCES

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth Inter-
national Group, Belmont, Calif., 1984.

[2] M. Anikst et al. The SSI large-vocabulary speaker-
independent continuous-speech recognition system. In
Proc. 1991 ICASSP, pages 337 340, 1991.

[3] E. L. Bocchieri and J. G. Wilpon. Discriminative analy-
sis for feature reduction in automatic speech recognition.
In Proc. 1992 ICASSP, volume I, 1992.

[4] P. C Woodland and S. J Young. The HTK tied-state
continuous speech recogniser. In Proc. Furospeech, vol-
ume 2, pages 2207-2210, 1993.

[5] Jonathan T. Foote. Decision-Tree Probability Modeling
for HMM Speech Recognition. Ph.D. thesis, Brown Uni-
versity, Providence, RI, 1993.

[6] M. Anikst, W. Meisel, M. Soares, and K. Lee. Exper-
iments with tree-structured MMI encoders on the RM
task. In Proc. Third DARPA Speech and NL Workshop,
June 1990.

[7] J. T. Foote and H. F. Silverman. A model distance

measure for talker clustering and identification. In Proc.
1994 ICASSP, volume S1, pages 317-320, April 1994.

