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ABSTRACT

This paper describes methods of talker clustering and iden-

tification based on a “distance” metric between discrete
HMM output probabilities. Output probabilities are de-
rived on a tree-based MMI partition of the feature space,
rather than the usual vector quantization. The information
divergence between speaker-dependent models is used as a
quantitative measure of how much a given talker differs from
another talker. An immediate application is talker identi-
fication: an unknown speaker may be identified by finding
the closest speaker-dependent reference model to a model
trained on the unknown speaker’s data. Another applica-
tion is to cluster similar talkers into a group; these may be
used to train a HMM model that represents that talker bet-
ter than a more general model. It is shown that using the
model “nearest” a novel talker enhances the performance of
a talker-independent speech recognition system.

1. A DISTANCE METRIC

The distance! metric is based on the relative entropy be-
tween discrete HMM output probability distributions. The
object is to obtain a quantitative measure of how well a par-
ticular model represents a given talker. This can be used
to select the most appropriate model to use for recognition,
or the “closest” talker-dependent model for talker identifi-
cation. Unlike similar applications of this metric [1, 2], the
distance is not explicitly based on temporal features (HMM
transition probabilities or frame lengths) and is thus inde-
pendent of time.

1.1. Relative Entropy

Given two probability distributions p(-) and g(-) on the
same discrete space X, the relative entropy (also called in-
formation divergence or the Kullback-Leibler distance) be-
tween the distributions is defined as [3]:
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Though this is not symmetric (in general (p||q) # (q||p)), a
symmetric measure may be constructed by taking the mean

of (pllg) and (ql|p)
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L“Distance” is used here loosely, as the measures discussed
may not be symmetric or satisfy the Triangle Inequality.
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If the same vector quantizer (VQ) is used for two HMMs,
the output probabilities are on the same discrete space, and
thus the relative entropy between them may be computed.
For the experiments described here, vector quantization is
done using the MMI-constructed decision trees of section
1.2., (though a conventional nearest-neighbor VQ would
probably also suffice).

1.2. Tree Output Probability Models for Speech

A decision tree is used to partition the feature space into a
number of discrete regions (analogous to the Voronoi regions
surrounding reference vectors in a vector quantizer). Un-
like K-means reference vector estimation, the tree is grown
in a supervised fashion. Each decision in the tree involves
comparing one element of the vector with a fixed threshold,
and going to the left or right child depending on the out-
come. Fach threshold is chosen to maximize the mutual in-
formation between the data and class labels (obtained from
Viterbi alignment) that indicate the acoustic class of each
datum. (The interested reader is referred to [4] for more
information on tree construction.) The tree partitions the
feature space into L non-overlapping regions or “cells,” each
of which corresponds to a leaf of the tree.

Let p;(7) denote the probability that an observation &,
emitted by HMM state s; falls in leaf cell {; (Where 7 indi-
cates the particular state and j the particular leaf):

py(1) = Pr(lj|si). (3)

A tree density model therefore consists of a set P of proba-
bilities p; (z), which can be considered as S vectors of length
L, where S is the number of states in the model and L is
the number of leaves in the tree. A tree-based HMM model

can then be denoted as A = A(m, A, P), where P takes
the place of the output probability matrix B of conven-
tional discrete HMMs. Note that if a tree is used as a vec-
tor quantizer, a model trained with quantized observations
will have probabilities B identical to a tree-based model P.
HMM parameters may be estimated from either the Baum-
Welch algorithm as well as Viterbi training. The Viterbi
algorithm is used for the experiments presented later and is
discussed in the following section.

1.3. Tree Parameter Estimation

Given Viterbi-aligned data and an existing decision tree,
it 1s straightforward to count NCj;, the number of data
points from state s; (i.e. the number of observation vectors
aligned with state s;) that wind up in leaf I;. From this,
the conditional probability of an output falling in leaf node
l; given the state s; may be estimated as

pi(2) = Pr(llsi) (4)
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Figure 1. Talker Identification System
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Thus the tree output probabilities can be quickly esti-
mated by Viterbi-aligning novel data and counting the rel-
ative frequencies at each leaf. (Alternatively, p;(¢) may be
estimated from the well-known forward-backward algorithm
[4].) In practice, the talker identification task requires that
models be trained with a minimum amount of data, leading
to zero NCj; for many 1 and j. In this case, p;(i) values of
zero are set to some small floor value and renormalized.

Training identical trees with different data sets results in
two (or more) different output probability estimates, de-
noted pj (1) and p!(¢). The symmetric relative entropy be-
tween two distributions can then be computed by
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This 1s the distance metric used for the remaining discus-
sion.

2. TREE-BASED QUANTIZATION FOR
SPEECH

The tree-based vector quantizers have some interesting ad-
vantages over conventional vector quantizers. Perhaps most
importantly, MMI-constructed trees can arguably handle
the “curse of dimensionality” better than a minimum-
distortion VQ, in part because only one dimension is con-
sidered at each split. Dimensions that do not help class
discrimination are ignored, in contrast to a distortion met-
ric which is always computed across all dimensions.

Another way to simplify high-dimensional problems is to
use overlapping trees. In a manner similar to using multiple
“codebooks,” multiple trees may be grown independently
for lower-dimensional subsets of the feature space. Output
probabilities are then computed as the product of the tree
probabilities. These will be underestimated if the subspaces
are not truly independent, but this is usually outweighed by
the higher spatial resolution obtainable (it increases expo-
nentially with the number of overlapping trees).

Another advantage of trees is they are easily pruned to a
smaller size, allowing the number of free parameters (pro-
portional to the number of leaves) to be tailored to the
problem. Where data is sparse (as in talker ID), smaller
trees are more robust to undertraining, though the result-
ing model is coarser.

2.1. Experimental Tree Models

The feature space was seven adjacent 14-dimensional vec-
tors consisting of 12 LPC-derived mel-cepstral coefficients,
energy, and delta energy. This 98-dimensional space was di-
vided into 5 subspaces consisting of cepstral coefficients 1-3,
4-6, 7-9, 10-12, and the energy/delta energy features, and
separate trees (denoted 1-5 respectively) were constructed
for each subspace. Thus the basic model consisted of 5
overlapping trees, one for each subspace. The trees used
were derived from those that achieved the best performance
(11.6% error) on a talker-independent connected alphadigit
task [4]. (Because only seconds of data are available for
the identification task, the trees were pruned from several
thousand leaves to approximately 256 to reduce the number
of parameters.)

Models were trained and tested using a corpus of con-
nected alphadigits recorded at Brown University. Nearly
6.5 hours of speech from 116 talkers was collected using a
head-mounted microphone sampled at 16kHz. Each talker
read approximately 40 utterances composed of random digit
sequences, random alphadigit sequences, and spellings of
dictionary words. Utterances have an average length of
about 15 connected alphadigits; these were truncated if
the talker-identification task needed shorter test utterances.
The database was arbitrarily split into a 96 talker (64 men,
32 women) training set, and an evaluation set of 20 different
talkers (12 men, 8 women).

3. TALKER IDENTIFICATION

A good talker distance metric should be useful for talker
identification, because models trained on data from the
same talker will be “close.” Figure 1 shows a talker iden-
tification scheme based on the distance measure of Section
1. Initially, a number of reference models are constructed,
each trained on data from a particular speaker. A small
amount of data from an unknown talker is Viterbi-aligned
and used to train a “test” model. The distances between the
test model and all reference models are computed; the ref-
erence model with the smallest distance from the test talker
is assumed to identify the unknown talker. For speaker ver-
ification tasks, (i.e. the talker may not be in the training
set), a threshold may be set to reject talkers that do not
sufficiently resemble any reference model.

3.1. Identification Experiments

About 80 seconds of Viterbi-labeled speech data from each
of the evaluation talkers were used to train 20 different
“reference” models. For each talker, a “test” model was
trained with 10 seconds of novel data not used for the ref-
erence model training. The relative-entropy distance was
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Figure 2. Talker distance matrix (darker = closer)

computed between each test and reference model; in all
cases the distance to the same-talker reference model was
smaller than any intratalker distance. Thus the distance
metric used for talker identification results in 100% iden-
tification accuracy on this test set. Figure 2 displays the
talker distance matrix graphically. The intersection of row
¢ and column j represents the distance between the talker
1 reference model and the talker j test model; the lighter
the element the more distant the talker. The closest dis-
tances in a row are clearly on the diagonals, which are the
distances between the test and reference models from the
same talkers.

A useful talker identification system should require only a
small amount of test data. However, identification error will
increase as the amount of test data shrinks, because many
relative frequencies will be zero. To investigate the iden-
tification accuracy as a function of available test data, the
same 20-talker experiment was performed but the amount
of data available for the test models was varied from three
to ten seconds, as shown in Figure 3. Note that six seconds
of test data was sufficient to accurately identify all talkers.
More phonetically balanced test utterances, would probably
reduce the amount of necessary speech even further.

An additional experiment judged the accuracy of the
talker identification over the 96-talker training database.
Results with 10 seconds of test speech showed that only
one talker was misidentified, a 1.04% error rate. Using 40
seconds of test data improved the accuracy to 100%, al-
though this probably could have been achieved with sub-
stantially less than 40 seconds. Table 1 shows the results
of using the distance measures of individual trees as well
as the mean distance across all trees. The energy features
(tree 5) were the least useful for talker identification, while
the the higher-order cepstra (tree 4) gave the best perfor-
mance alone. This is reasonable because energy and gross
spectral shape are probably less talker-dependent than the
more detailed spectral features represented by the the high-
order cepstra. All features, however, were necessary for the
highest 1dentification rate.
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Figure 3. Talker Identification Accuracy vs. Test Speech

4. TALKER CLUSTERING FOR IMPROVED
HMM RECOGNITION

It is generally agreed that using separate models for male
and female talkers improves the performance of HMM-based
speech recognition systems [5]. Unfortunately, often female-
trained models are better for some male speakers and vice-
versa. One use of the the distance measure is to aggregate
talkers based on speech characteristics rather than gender.
To demonstrate this, a partitioning algorithm ([6]) was em-
ployed to generate two different clusters of the 96 talkers in
the training set. Half of the training talkers were randomly
assigned to each cluster, then an iterative method was used
to refine the clusters. A talker was moved from one cluster
to the other if it increased a measure of cluster “goodness.”
The iteration was terminated when moving any talker re-
sulted in a decrease of cluster goodness.

There are several reasonable ways to measure cluster
goodness, including mean intracluster distance, mean in-
tercluster distance, or a combination. For this experiment,
the the mean intracluster talker distance, summed across
the clusters, was used. This was computed by averaging
all distances D(3, j) for talkers ¢ and j in the same cluster.
After the iterative clustering, 90% of talkers in one cluster
were male and 100% of talkers in the other cluster were fe-
male; this is good evidence that the clustering procedure
groups similar talkers. The clustering is illustrated in Fig-
ure 4, which shows the distance matrix sorted by cluster
(Which are clearly Visible). Note that one cluster is much
larger (71 talkers) than the other (25 talkers); this is almost
certainly due to the numerical disparity of females (32) and
males (64) in the training set.

4.1. Recognition Experiments

Two different models were trained from the talker clusters
just found. Recognition experiments were performed using
the LEMS talker-independent, connected-alphadigit recog-
nition system [7].) A further application of the distance
metric is the selection of an appropriate model for a given
talker. Figure 5 shows that the most appropriate model is

[ Tree 1 2 3 4 5
[ Error | 8.3% | 104% | 83% | 4.1% | 24.0%

Mean |
1.0% |

Table 1. ID error for single and multiple trees.



Figure 4. Distance matrix sorted by cluster

the one closest — that 1s, with the smallest distance — to a
novel talker. The vertical axis is the difference in distances
between talker-dependent “test” models and the two clus-
ter models; a negative value means the talker was closest
to the predominantly-male model. The horizontal “perfor-
mance” axis is the difference in percentage word recognition
error between the two models. A negative value means a
given talker performed better on the predominantly-male
model. The figure shows that for all talkers, recognition
performance is substantially better on the “closest” model.
Male talkers are indicated by “o0” and female talkers by “+;”
note that one female talker is best represented by the male
model. In general, the distance metric is a better criterion
than gender for selecting the appropriate model.

Using the cluster models improves recognition perfor-
mance substantially. A 5-tree, 256-leaf baseline model was
trained on all 96 talkers and resulted in 14.3% word error
rate on the test set of 20 novel talkers. Additionally, two
models were trained from the clustered talkers as just de-
scribed. Using the closest model for recognition reduced
the error from the baseline of 14.3% to 12.1%, a decrease
of 15%. Perhaps more importantly, the word error of the
poorest-performing talker was decreased by more than 40%,
because the clustered model better represented that talker.
Note that the comparison is between the baseline model
trained on 96 talkers and models trained on 75 or 21 talk-
ers, so even though the two models have twice as many
parameters to estimate, the clustering partitions the data
appropriately.

5. CONCLUSIONS

The work presented here could be extended in a number
of ways. It should be emphasized that the trees were built
to maximize the discrimination between different acoustic
events and to effectively ignore talker-dependent features.
The talker-identification distances might be made even
more robust by constructing the trees to maximize discrim-

Baseline | By Gender | By Distance
14.3% 14.6% 12.1%

Table 2. Recognition error of multiple models.
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Figure 5. Model Distance vs. performance difference.

ination between talkers. In this case, the class-independent
output probabilities (the total probability mass in a leaf)
could be used to obviate the need for the initial Viterbi
alignment.

Clustered-talker modeling provides another area to ex-
plore. Different clustering algorithms and goodness-of-
cluster measures should probably investigated. Given suffi-
cient training data, more than two models could certainly
be used; the optimal number of clusters is a open question.
There is also no good reason to train separate models on
distinct sets of talkers. Indeed, some overlap might be de-
sirable to increase the amount of training data in a cluster.

To summarize, the distance measure described here cap-
tures meaningful differences among talkers and is rapidly
computable. Experiments have shown that it is a robust
means of talker identification, and also and serves as a quan-
titative way of clustering talkers to decrease the error of an
HMM recognition system.

This work has been funded in part by NSF grant MIP-
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