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ABSTRACT

This paper presents recent work on a multimedia retrieval
project at Cambridge University and Olivetti Research Lim-
ited (ORL). We present novel techniques that allow ex-
tremely rapid audio indexing, at rates approaching several
thousand times real time. Unlike other methods, these tech-
niques do not depend on a fixed vocabulary recognition sys-
tem or on keywords that must be known well in advance.
Using statistical methods developed for text, these indexing
techniques allow rapid and efficient retrieval and browsing of
audio and video documents. This paper presents the project
background, the indexing and retrieval techniques, and a
video mail retrieval application incorporating content-based
audio indexing, retrieval, and browsing.
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INTRODUCTION

Recent years have seen a rapid increase in the availabil-
ity and use of multimedia applications. These systems can
generate large amounts of audio and video data which can
be expensive to store and unwieldy to access. The Video
Mail Retrieval (VMR) project at Cambridge University and
Olivetti Research Limited (ORL), Cambridge, UK, is ad-
dressing these problems by developing systems to retrieve
stored video material using the spoken audio soundtrack
[3, 25]. Specifically, the project focuses on the content-based
location, retrieval, and playback of potentially relevant data.
The primary goal of the VMR project is to develop a video
mail retrieval application for the Medusa multimedia envi-
ronment developed at ORL.

Finding the information content of arbitrary spoken docu-
ments is a difficult task. This paper presents methods of
rapidly and automatically locating words spoken in voice
and video mail messages. Unlike other approaches, these
techniques do not depend on a limited-vocabulary recogni-
tion system or on “keywords” that must be known well in
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advance of search time [30] [21]. Given an estimate of word

locations, we show that statistical retrieval methods can be
used for efficient spoken document retrieval and browsing.
These exploit a “phone lattice,” which represents multiple
acoustic hypotheses from which possible word occurrences
can be inferred. This paper is organised as follows: after an
overview of audio indexing methods, the multimedia environ-
ment and corpus of spoken documents is described. Further
sections present the speech recognition and information re-
trieval methods used, and a final section describes how they
are combined in a real-time open-vocabulary video mail re-
trieval system.

AUDIO INDEXING

The large computational cost of speech recognition is a fun-
damental obstacle to automatic audio indexing. Even us-
ing the most advanced decoders, recognition speed is seldom
much faster than real-time, and often far slower. Though
this may be acceptable for typical speech recognition appli-
cations such as dictation, it is clearly unacceptable to incur
several hours of computation when searching an audio corpus
of similar length.

The normal solution is to shift the computational burden
ahead of need; thus for a voice-mail retrieval application,
the expensive speech recognition is performed as messages
are added to the archive. This allows rapid online searches
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as no recognition is done at search time: only the pre-
computed index files need be interrogated. This approach
has been used in cases where a “word spotting” and/or
large-vocabulary recognition system generates text “pseudo-
transcriptions” from the audio documents, which may then
be rapidly searched. For example, previous work on the
VMR project demonstrated practical retrieval of audio mes-
sages using fixed-vocabulary word spotting for content iden-
tification [12, 5], and more recent work has explored combin-
ing word spotting and large-vocabulary recognition for audio
retrieval [14].

A similar approach is taken by most other groups work-
ing on audio indexing. In the Carnegie Mellon Informedia
project, a combination of verbatim text transcriptions and
large-vocabulary recogniser output are used for search in-
dexes [23]. A large vocabulary system was used for topic
spotting at BBN [16], while workers at Ensigma Ltd used
keyword spotting for similar ends [31]. A novel approach
is taken at ETH Ziirich, where subword units are used as
search indexes [28].

With the possible exception of work done at ETH Ziirich, the
drawback of these approaches is that index terms (the de-
sired keywords or vocabulary) must be known well in advance
of search time. A large-vocabulary system has the added
drawback that a statistical “language model” (defining likely
word tuples) must be available, otherwise the recognition
search becomes computationally infeasible. To be useful,
language models must be trained on example text (typically
megawords) from a (hopefully) similar domain. While this
may be possible for some domains (say broadcast news), it
is much less practical for others, such as the video mail do-
main considered here, where there is unlikely to be sufficient
training data.

This paper presents an alternative approach where a phone
lattice is computed before search time. Though this takes
substantial computation, it is less expensive than a large-
vocabulary recognition system, and has the additional ad-
vantage that it requires no language model. Once computed,
the phone lattice may be rapidly scanned using a dynamic-
programming algorithm to find index terms [10]. This re-
quires a phonetic decomposition of any desired words, but
these are easily found from a dictionary or by a rule-based
algorithm [4]. For comparison, the lexicon of our “large” vo-
cabulary experiments was 20,000 words, while our phonetic
dictionary has more than 200,000 entries.

This paper reports quantitative experiments demonstrat-
ing that Information Retrieval (IR) methods developed for
searching text archives can accurately retrieve audio and
video data using index terms generated on-the-fly from
phone lattices. In addition, the same techniques can be used
to rapidly locate interesting areas within an individual mail
message. The paper concludes with the description of an on-
line video mail retrieval application, including approaches to
content-based audio browsing.

MEDUSA: MULTIMEDIA ON AN ATM NETWORK

The Medusa Project at ORL is a novel and extensive ex-
periment in sending multiple simultaneous streams of dig-
ital audio and video over a prototype 100 Megabit-per-
second switched ATM (Asynchronous Transfer Mode) net-
work [7, 15]. A number of ATM Network Endpoints have
been developed enabling the direct connection to the net-
work of microphones, speakers, cameras, disk systems and
LCD displays. This concept of exploding the workstation
across the network has provided a very adaptable and easily

Figure 2. MDMail: Medusa video mail application

extensible environment for the work presented here. Some
200 of these Network Endpoints cover all laboratory rooms
and optical fibre extends the ATM network to the Univer-
sity Engineering Department and the University Computer
Laboratory. An ATM network’s high bandwidth, low la-
tency, and low transit time jitter make it an ideal transport
medium for multimedia applications.

The Medusa software developed at ORL handles multime-
dia in a highly distributed environment. Medusa servers are
run on each Network Endpoint and networked workstation
in a peer-to-peer architecture. Software objects called Mod-
ules created within these servers provide media sources, sinks
and pipeline processing components which can be connected
together across the network in arbitrary ways. The software
modules provide direct digital access to the audio and video
data. This architecture enables expensive tasks like video
processing and speech recognition to be sited on appropri-
ate hardware, which can then offer its services to any source
object connected to the network.

The Multimedia Repository

The Disc Endpoint, which is the size and shape of a small
vertical format PC case, uses the ORL standard ATM net-
work interface card plus a SCSI interface to make a RAID-3
array of discs available as a multimedia file server. The initial
prototypes use five 2 Gbyte drives giving a storage capacity
of 8 Gbytes per unit. Four Disc Bricks are currently deployed
on ORL’s ATM network. Disk capacities nearly double each
year; it is now possible to construct 32 Gbyte devices and
we anticipate 64 Gbyte ones within a year.

Medusa ATM camera Endpoints capture frames at a resolu-
tion of 176 x 128 pixels at a rate of 25 frames per second.
With 5 bits per colour component packed into a 16 bit short
word this equates to a raw data rate of 8.8 Megabits per
second, though this may be lowered by reducing frame rate
or size. Together with the 0.5 Megabits per second required
for uncompressed 16-bit audio sampled at 32 KHz, a typical



30 second video mail message amounts to about 35 Mbytes
of data. By pragmatically reducing the picture resolution it
is possible to store over 1000 video mail messages on an 8
Gbyte device.

Recent developments have made available ATM-networked
combined audio and video sources which deliver MPEG com-
pressed data. This reduces these storage requirements dra-
matically, improving quality at the same time. It is now
practical to build an archive containing hundreds of hours
of audio/video material. As an example, a 64 Gbyte disc
system could store over 90 hours of VHS quality material,
equivalent to 11,000 typical video mail messages. If this were
MPEG audio only some 88,000 audio mail messages could
be stored. As archives with a capacity of this magnitude be-
come more common, better ways of locating and retrieving
information become essential.

THE VMR MESSAGE CORPUS

For research into the underlying speech recognition and in-
formation retrieval technologies, it was necessary to collect a
corpus of mail messages and additional spoken data. (While
other spoken data collections exist, they do not have the
necessary information content for meaningful IR experimen-
tation.)

The VMR message corpus is a structured collection of audio
training data and information—bearing audio messages. Ten
“categories” were chosen to reflect the anticipated messages
of actual users, including, for example, “management” and
“equipment.” For the message data, speakers were asked to
record a natural response to a prompt (with five prompts per
category), for a total of 50 unique prompts. The messages
are fully spontaneous, and contain a large number of disflu-
encies such as “um” and “ah,” partially uttered words and
false starts, laughter, sentence fragments, and informalities
and slang (“fraid” and “whizzo”). There were 6 messages
(from 6 different users) for each of the 50 prompts. A more
complete description of the VMR corpus may be found in
[11].

There were fifteen speakers, of which 11 were male and 4 fe-
male. Data was recorded at 16 kHz from both a Sennheiser
HMD 414 close-talking microphone and the cardioid far-field
desk microphone used in the Medusa system, in an acous-
tically isolated room. Each speaker provided the following
speech data:

e Test: 20 natural speech messages (“p” data): the re-
sponse to 20 unique prompts from 4 categories.

e Train: Various additional training data for speech
recognition models:

— 77 read sentences (“r” data): sentences containing
keywords, constructed such that each keyword oc-
curred a minimum of five times.

— 170 keywords (“i” data) spoken in isolation.

— 150 read sentences (“z” data): phonetically-rich sen-
tences from the TIMIT corpus.

All files were verified and transcribed at the word level; non-
speech events and disfluencies such as partially spoken words,
pauses, and hesitations were transcribed in accordance with
the Wall Street Journal data collection procedures. Phonetic
transcriptions were automatically generated from a machine-
readable version of the Oxford Learners Dictionary. The
standard reduced TIMIT phone set was augmented with
additional vowels specific to British English pronunciation.
The resulting 300 messages (5 hours of spoken data), along

with their text transcriptions, serve as a test corpus for the
speech recognition and IR experiments.

For a practical system, it cannot be assumed that speak-
ers will be known, thus it is necessary to have speaker-
independent acoustic models. To build such speaker-
independent acoustic models, additional training data was
obtained from the WSJCAMO British English corpus, which
consists of spoken sentences read from the Wall Street Jour-
nal. Data was collected for 100 British English speakers. The
corpus contains a total of around 12 hours of spoken data.
WSJCAMO was collected at Cambridge University Engineer-
ing Department and further details may be found in [19].

ACOUSTIC INDEXING VIA PHONE LATTICES

Automatically detecting words or phrases in unconstrained
speech is usually termed “word spotting;” this technology
is the foundation of the work presented here. Conventional
keyword spotters based on the same hidden Markov model
(HMM) methods used in successful continuous-speech recog-
nition [18]. A hidden Markov model is a statistical represen-
tation of a speech event like a word; model parameters are
typically trained on a large corpus of labelled speech data.
Given a trained set of HMMs, there exists an efficient algo-
rithm for finding the most likely model sequence (the recog-
nised words), given unknown speech data.

The work presented here takes a different approach, based
on the work of James [9]. An off-line HMM system is used
to generate a number of likely phone sequences, which may
then be rapidly searched to find phone strings comprising
a desired word. For HMM training and recognition, the
acoustic data was parameterised into a spectral represen-
tation (mel-cepstral coefficients), and difference and accel-
eration coefficients were appended. The HTK tool set was
used to construct both speaker-dependent (SD) and speaker-
independent (SI) monophone models as well as speaker-
independent biphone models [34]. All phone models have
3 emitting states, each with 8 Gaussian mixture diagonal-
covariance output distributions.

Model Training

For every training utterance, a phone sequence was gener-
ated from the text transcription and a dictionary. These
sequences were used to estimate HMM parameters as fol-
lows. Speaker-dependent “monophone” models were trained
on the read messages (“r” data) and sentences from the
TIMIT database (“z” data). Once single-mixture mono-
phone models had been initialised, the number of mixture
components was increased, and the parameters re-estimated.
Re-estimation was halted at 8 mixture components, as ad-
ditional components did not improve performance. Speaker-
independent models were trained in a similar manner on the
WSJCAMO corpus of read speech, which contains more than
one hundred speakers.

Though we rarely notice, phone pronunciation changes dras-
tically depending on context (contrast the “T” sound in “at-
tack” and “stain.”) Automatic speech recognition improves
substantially when phone models can be made context-
dependent, thus the two “T” sounds above would have
separate models because they occur in different contexts.
Speaker-independent “biphone” models were constructed
by “cloning” the 1-mixture speaker-dependent monophones
such that each possible biphone was represented, then clus-
tering similar states using a decision tree [32]. State pa-
rameters are tied across a cluster, then re-estimated in the
usual way, once again up to 8 mixtures. An advantage of



Figure 3. Phone lattice for word “manage” (m ae n ih jh)

this training method is that all possible biphones are mod-
elled, yet because most states are tied, the full model set is
relatively compact. There was insufficient training data to
construct speaker-dependent biphones.

Lattice Generation

With a set of phone HMMs and a network of possible phone
interconnections, it is possible to find the most likely se-
quence of phones given unknown acoustic data using an ef-
ficient search based on the Viterbi algorithm. An enhanced
version of this algorithm can generate multiple hypotheses,
representing the n most likely paths through the models.
Such multiple hypotheses can be stored as a phone lat-
tice: a directed acyclic graph where nodes represent phone
start/end times and arcs represent hypothesised phone oc-
currences between them. Arcs are labelled with an acoustic
score indicating the likelihood that the acoustic data over
that interval corresponds with the particular phone model.
To simplify searching, the lattices used here have the addi-
tional constraint that all paths must start at a particular
start node and end at another special node.

The “depth” of a phone lattice is the number of phone hy-
potheses active at a given time. This parameter is critical
to the performance of a lattice-based spotting system. If the
lattice is too shallow, performance will be poor due to un-
avoidable phone recognition errors. Because the best phone
recognition systems are little more than 70% accurate [20],
the chance that a given phone string will be correctly iden-
tified in a 1-deep lattice is poor. On the other hand, if the
lattice is too deep, too many phone sequences become pos-
sible, most of which will be incorrect. Another drawback is
that the storage requirements and search time increase sub-
stantially with lattice depth. Failing to identify an uttered
search word is termed a miss while hypothesising a word
where none is present is a false alarm.

Lattice depth may be adjusted through several mechanisms.
During generation, the number of active tokens at one time
represents the n-best paths through the model lattice [33].
The more tokens used, the deeper the lattice. To speed lat-
tice generation, a pruning threshold is used: this ensures
that low-likelihood phone paths are not considered, saving
substantial computation. The lower the pruning threshold,
the more possible paths considered, and hence the deeper the
resultant lattice. Figure 3 shows a lattice generated for the
single utterance “manage.” For clarity, acoustic scores and
start/end times are not shown, though nodes are arranged
in roughly chronological order. Four tokens were used in the
decoding: the resultant lattice depth was 5 as 35 arcs were
generated for the 7 phones actually uttered (m ae n ih jh
plus beginning and ending silences).

Model type: SI mono- | SD mono- SI
phones phones biphones

Phone Accuracy 41.1% 55.4% 51.7%

Figure of Merit 48.0% 73.6% 60.4%

Table 1. Speech recognition results for VMR corpus messages

Lattice Scanning

Once the lattices have been computed, it is relatively
straightforward to scan them for a phone sequence consti-
tuting a given word. Once a string of the correct phones
has been found, an acoustic score for the putative term is
computed as the sum of the phone arc scores normalised by
the best-path score. Deep lattices will result in many hy-
potheses for a given word (because of different paths start-
ing or ending within a few milliseconds) so overlapping word
hypotheses are eliminated by keeping only the best scoring
one. For example, Figure 3 shows two possible paths for the
phone sequence m ae n ih jh, because of the two instances
of the phone jh following ih. This scanning procedure can
be made extremely time-efficient, producing hypotheses in
the order of a thousand times faster than the source audio.

Speech Recognition Results

Table presents the results of lattice scanning experiments us-
ing 6 tokens, on the VMR corpus messages. The phone accu-
racy is defined as the ratio of correctly recognised phones, mi-
nus deletions and insertions, to the actual number of phones,
for the best path through the lattice. (Experiments on the
WSJCAMO read-speech corpus using the monophone mod-
els resulted in phone accuracies nearer 60%, indicating that
the natural-speech VMR corpus is more difficult than read
speech to recognise.)

Putative hits generated by a word spotting system generally
have an associated acoustic score. Because low-scoring words
are more likely to be false alarms, the operating point of the
recognition system may be adjusted by ignoring terms with a
score below a given threshold. Words with scores above the
threshold are considered true hits, while those with scores
below are considered false alarms and ignored. Choosing
the appropriate threshold is a tradeoff between the number
of Type I (miss) and Type II (false alarm) errors, with the
usual problem that reducing one increases the other. The ac-
curacy of a word spotter is thus dependent on the threshold
and cannot be expressed as a single number if false alarms
are taken into account. An accepted figure-of-merit (FOM)
for word spotting is defined as the average percentage of cor-
rectly detected words as the threshold is varied from one to



Full Vocab.
uw | cfw | cw

Weight Scheme

5 docs | 0.392 | 0.375 | 0.371
10 docs | 0.313 | 0.308 | 0.344
15 docs | 0.279 | 0.292 | 0.308
20 docs | 0.250 | 0.271 | 0.290

Average Precision | 0.327 | 0.352 | 0.368 |

Precision

Table 2. Retrieval precision values using full text transcriptions

(VMR Collection 1b)

ten false alarms per word per hour. These types of recogni-
tion error effect not only speech recognition but also infor-
mation retrieval performance [12]. A drawback of the lattice
scan approach is that it is not robust for short words — using
lattices of the depth necessary to detect longer words results
in a large number of false alarms for shorter ones. Though
more sophisticated scoring mechanisms might improve this,
the solution used here was to ignore very short words (3 or
fewer phones), which are typically not information-rich any-
way.

For comparison, the best FOMs obtainable using speaker-
independent keyword models was 69.9%, but this additional
accuracy was at the cost of having to explicitly search for
the 35 particular keywords in the recognition phase, which
is several orders of magnitude slower than the lattice-scan
approach [5].

INFORMATION RETRIEVAL VIA ACOUSTIC INDEXES

Once words can be located in a speech corpus (using the
techniques just described) they may be used for content-
based message retrieval, by applying Information Retrieval
(IR) techniques originally developed for text. IR techniques
attempt to satisfy a user’s information need by retrieving
potentially relevant messages from a document archive.

In practice, the user composes a search “request” as a sen-
tence or list of words from which a set of actual search
“terms” is derived. A score can be computed for a docu-
ment from the number or weights of matching “query” terms.
Searching an archive of documents will deliver an output
with documents ranked by matching score. The user can
then browse high-ranking messages in this output to find
desired information.

Prior to retrieval, conventional IR systems compute an “in-
verted file” structure where documents are indexed by term.
This allows extremely rapid retrieval because documents
containing a given term can be quickly located. In the VMR
system described here, the actual word-level contents of mes-
sage are unknown until search time and hence it is not pos-
sible to build the inverted file structure in advance. When
a request is entered, the lattices are scanned for each search
term, as described in the previous section; the putative hits
are then used to construct an inverted file for retrieval. On-
going retrieval efficiency is improved by preserving all lattice
scan results in the inverted file, so that effort is not dupli-
cated scanning for a term more than once.

Requests and Relevance Assessments

Evaluating retrieval performance is central to IR research.
Evaluating an IR system requires a set of message requests,

together with assessments of the relevance of each message
to each of these requests. Though some previous experi-
ments [3, 12] used a simulated request and assessment set, a
more realistic set has since been collected from the user com-
munity that supplied the database messages, forming VMR
Collection 1b.

A total of 50 text requests were collected from 10 users, each
of whom generated 5 requests and corresponding relevance
assessments. A request prompt for each category was formed
from the 5 message prompts associated with the category.
Users were asked to compose a natural language request after
being shown the request prompt.

Ideally, the relevance of all archived messages should be as-
sessed; however this is not practical even for our 300 mes-
sage archive (which is considered a very small archive by
the standards of text IR). A practical alternative is to assess
only a subset chosen to contain (hopefully) all the relevant
messages. A suitable assessment subset was formed by com-
bining the 30 messages in the category to which the original
message prompt belonged, plus 5 messages from outside the
category having the highest query-message scores (using cfw
weights, as in Section ). Subjects were presented with the
transcription of each message and asked to mark it as “rele-
vant”, “partially relevant”, or “not relevant” to the request
they had just composed. Messages were presented in random
order to avoid possible sequencing effects during assessment.
The following sections report results only for the set of mes-
sages assessed as highly relevant.

Text Preprocessing

In standard text retrieval systems, documents and requests
are typically preprocessed to improve retrieval performance
and storage efficiency. The first stage is usually to remove
function words (such as “the,” “which”) which do not help
retrieval. The remaining words are then stemmed to reduce
word form variations that inhibit term matching between
documents and requests.

Retrieval performance for spoken documents can be expected
to suffer degradation due to recognition errors (either misses
or false alarms on the search terms). In the VMR project, IR
benchmarks are established using the full text transcriptions
of the 300 messages. The relative degradation can then be
computed by comparing retrieval performance with that for
the text transcriptions.

The text transcriptions as well as the written requests were
therefore preprocessed before search. Function words were
removed using a standard “stop list” [27]. The remaining
words were reduced to stems using a standard algorithm due
to Porter [17]. For example, given the request

In what ways can the windows interface of a
workstation be personalised?

the following query is obtained:
wai window interfac workstat personalis

As the lattice is scanned only for the terms in the query,
stop words are ignored, which is fortunate because they are
generally short, and thus may not be reliably located by
the lattice scanning method. The issue of suffix stripping
is slightly more complex. There are several options here:
search only for the term as it appears in the request, search
for the suffix stripped term, search for all terms which re-
duce to the same stem as the request term, or search for the
shortest dictionary entry which reduces to this stem. The
option taken here is to search for the term as it appears in
the original request, although the other options are under



Average Precision (Relative %)
Weight Scheme uw | cfw | cw
Text Full Vocab 0.327 (100%) | 0.352 (100%) | 0.368 (100%)
Spoken SD monophones | 0.262 (80.1%) | 0.285 (81.0%) | 0.315 (85.6%)
Documents | SI monophones | 0.174 (53.2%) | 0.199 (56.5%) | 0.222 (60.3%)
SI biphones 0.224 (68.5%) | 0.262 (74.4%) | 0.277 (75.3%)

Table 3. Absolute and relative Average Precision for different lattice acoustic models (VMR Collection 1b)

investigation. Also the phonetic dictionary was expanded to
include all search terms and hence rule-based phonetic pre-
diction was not needed. Finally, search terms having 3 or
fewer phones were excluded since they generate too many
false alarms with the lattice depths used. For example, the
word “date” was not searched for, as its typical phone de-
composition (d ey t) was only three phones long. Though
it is clearly not optimal to discard search terms, less than
10% of query terms not in the stop list were too short, and
their absence did not harm retrieval performance unduly.

Message Scoring

Given a query, an estimate of each message’s relevance de-
pends on the number of terms in common. This estimate
gives the query-document matching score, and allows all
messages in the archive to be ranked in terms of potential
relevance [27]. Considering search term presence/absence
only, the simplest scoring method is just to count the num-
ber of terms in common, often called the unweighted (uw)
score. Better retrieval can be achieved by weighting terms,
for instance by the collection frequency weight (cfw),

cfw(i) = log %

where N is the total number of documents and n[i] is the
number of documents that contain search term ¢. This
scheme favours rarer (and hence more selective) terms. The
query-document matching score is then the sum of the
matching query term weights. A more sophisticated weight-
ing scheme takes into account the number of times each
term occurs in each document, normalised by the document
length. This latter factor is important since a document’s rel-
evance does not depend on its length, hence neither should
its score. The well tested combined weight (cw), described
further in [26], is

cfw (i) x tf(i,5) x (K +1)
K x ndI(j) + t£(3, 5)

cw(i, j) =

where cw(i, j) represents the cw weight of term 4 in docu-
ment j, the term frequency tf(,7) is the frequency of i in
j, and ndI(j) is the normalised document length. ndI(j) is
calculated as

- di(j)
Average dl for all documents’

ndI(j)

where dI(5) is the length of j. The combined weight constant
K must be determined empirically; after testing we set K =
1.

For full-text documents, the document length dI(5) is simply
the number of terms in document j. However, when deriv-
ing search terms from the phone lattice the situation is less
clear. The simplest estimate of dI(j) is the number of search

terms actually located in the document. This is unsatisfac-
tory for several reasons: for example, a short document with
a large number of false alarms may appear comparatively
long. This motivates other estimates of document length,
such as its length in time. Our experiments indicate that a
better representation of di(j) is the number of phones in the
the most likely phone sequence. This is easily computed dur-
ing speech recognition and is intuitively a reasonable mea-
sure since the number of phones should be independent of
speaking rate and hence is a better measure of the number
of words actually spoken.

Measuring IR Performance

Given a query, a matching score may be computed for every
document in the archive using the methods just described.
Documents can then be ranked by score so that the highest-
scoring documents (potentially the most relevant) occur at
the top of the list. Retrieval performance is often measured
by precision, the proportion of retrieved messages that are
relevant to a particular query at a certain position in the
ranked list. One accepted single-number performance figure
is the average precision. For each query, the precision values
are averaged for each relevant document in the ranked list.
The results are then averaged across the query set, resulting
in the average precision. Other less reductive retrieval evalu-
ation metrics are available and generally preferable, but this
single-number performance measure is a useful basic perfor-
mance indicator.

Retrieval Results

This section presents experimental retrieval results for VMR
Collection 1b, both for text transcriptions and for indexes
derived from the monophone and biphone lattices discussed
in Section . All results are for the a posteriori best acoustic
threshold, and all cw scores estimate the document length as
the number of phones. The basic comparisons are between
monophone and biphone results, and between SI and SD
model results. However, it is helpful to set this spoken doc-
ument retrieval performance against reference performance
for text.

Thus Table 2 shows retrieval performance using full open-
vocabulary text transcriptions. These results confirm that
more sophisticated weighting schemes improve retrieval per-
formance. Note that the average precision score is the av-
erage of the precision values for the relevant documents in
the ranked list. Figure 3 shows retrieval performance for
the various models and weighting schemes for the spoken
documents. Absolute average precision is shown, and also
that relative to the average precision obtainable from text
(which may be considered the best possible). Clearly the
cw scheme produces the best retrieval performance. In ad-
dition, retrieval performance is well-correlated with speech
recognition accuracy. Thus the SI biphones are better than
the ST monophones, but the SD monophones are better still.
It is not surprising that the SD monophones resulted in the
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best retrieval performance as they had the best phone recog-
nition accuracy. But SD models limit the usefulness of the
VMR system and hence the extension to SI modelling is im-
portant. Though the SI biphones do not perform as well as
the SD monophones, the speaker-independent models allow
messages uttered by any speaker to be retrieved. It should
be noted that one of the speakers is a native American and
another speaker’s accent is strongly influenced by his cen-
tral European background. The British English models used
here are not well matched to these speakers resulting in lower
recognition performance. Nevertheless, reasonable retrieval
performance can be obtained. Clearly spoken document re-
trieval is less good than the text case, but not disastrously so.
More importantly, with the best weighting scheme (cw) the
speaker independent biphone models perform respectably in
themselves and not much worse than the speaker-dependent
case.

A REAL-TIME VIDEO MAIL RETRIEVAL APPLICATION

At some point, results from both the keyword spotting and
information retrieval must be presented to the user. The
approach taken for the VMR user interface is the “message
list filter.” Upon startup, a scrollable list shows all available
messages in the user’s video mail archive. Using informa-
tion in the mail message header, various controls let the user
“narrow” the list, for example, by displaying only those mes-
sages from a particular user or received after a particular
time. Unsetting a constraint restores the messages hidden
by that constraint; multiple constraints can be active at one
time, giving the messages selected by a boolean conjunction
of the constraints.

A natural addition to this scheme is to add message at-
tributes that reflect the information content of the audio
portion, as determined using the retrieval methods described
previously. In operation, the user types in a text search
query. The resulting score for each message is computed by
the retrieval engine, and the interface then displays a list
of messages ranked by score. Scores are represented by bar
graphs, as in Figure 5; messages with identical scores are
ranked by time. In its simplest form, the keyword search
resembles an “audio grep” that returns a list of messages
containing a particular keyword. Because the search is pho-
netic rather than textual, certain “tricks” can be used to
enhance search effectiveness:
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Figure 5. Video Mail User Interface application

e Concatenation: A “+” in the query instructs the dic-
tionary lookup routine to concatenate two words into
one long phone string. Example: to find the word
“netscape” search for “nets+cape.”

e Word Stems: If a given search fails on a long word,
shorter variants may work better. Example: To find
“managerial” search for “manage.”

e Homophones: If a given word is not in the dictionary,
it may still be found using a homophone (exact rhyme).
Example: to find “Basque” search for “bask.”

e Phonetic representation: If not in the dictionary or
amenable to the previous approaches, a word may still
be found by entering its phonetic composition directly.
Example: “Yeltsin” = “#y+i#eh+#l+#t+#s+#ih+#n.”
The initial “#” is necessary to distinguish single-letter
phones from single-letter words (eg “#b” # “B” =
“b+#iy”). A help menu is available that displays a
list of phones and their pronunciations.

All the above approaches may be used in conjunction; for
example the following query would be useful to find the term
“ATM” : “A+T+M eighty”

Figure 4 shows a block diagram of the video mail retrieval ap-
plication. All archived messages have corresponding lattices,
generated when the mail message was added to the archive.
When the user types a search request into the interface, the
information retrieval engine interrogates the inverted file to
determine whether any previously unseen terms are present.
If so, the lattice scan engine locates term occurrences in the
available lattices. These new hypotheses are then added to
the inverted file and preserved for future reference. The ac-
tual search time for unseen terms, though extremely rapid, is
not instantaneous. In our demonstration system, searching
more than an hour of audio data for these terms will take
less than five seconds for a typical request. Once all available
term hypotheses have been located, a ranked list of messages
is computed, and returned to the GUI.

A Video Message Browser

After the ranked list of messages is displayed, the user must
still investigate the listed messages to either find the rele-
vant one(s) or determine that the retrieval was ineffective
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Figure 6. Video mail browser showing detected keywords

and that a new search is required. While there are conve-
nient methods for the graphical browsing of text, e.g. scroll
bars, “page-forward” commands, and word-search functions,
existing video and audio playback interfaces almost univer-
sally adopt the “tape recorder” metaphor. To ensure that
nothing important is missed, an entire message must be au-
ditioned from start to finish which takes significant time. In
contrast, the transcription of a minute-long message is typi-
cally a paragraph of text, which may be scanned by eye in a
matter of seconds. Even if there is a “fast forward” button it
is generally a hit-or-miss operation to find a desired section
in a lengthy message. We can, however use the term indexes
to provide a reliably economical way to access and review
audio/video data.

Our browser is an attempt to represent a dynamic time-
varying process (the audio/video stream) by a static image
that can be taken in at a glance. A message is represented
as horizontal timeline, and events are displayed graphically
along it. Time runs from left to right, and events are rep-
resented proportionally to when they occur in the message;
for example, events at the beginning appear on the left side
of the bar and short-duration events are short. When a par-
ticular file is selected for browsing, the list of term indexes
(including exact times of search term occurrences) is avail-
able to the browser from the inverted file. For a selected mes-
sage, the browser contents are computed dynamically for the
current query by following a linked-list through the inverted
file which links hypotheses pertaining to this particular mes-
sage. Potentially interesting portions of the message are thus
easily identified.

A simple representation is to display putative keyword hits
on the timeline, as in Figure 6. The timeline is the black
bar; the scale indicates time in seconds. When pointed at
with the mouse, keyword names are highlighted in white (so
it may be read in the presence of many other keyword hits).
Clicking on the desired time in the time bar starts message
playback at that time; this lets the user selectively play re-
gions of interest, rather than the entire message. Figure 6

shows the keyword hits “folk” and “festival” (highlighted)
displayed on the time bar, starting about eight seconds into
the message; a time cursor (the triangle-bar) indicates the
current playback time. This approach may be enhanced by
displaying different search terms in different colours, and
weighting them according to term or document frequency
(so less discriminating search terms appear less prominent
in the display).

Due to false alarms, displaying all putative hits can some-
times give a misleading impression of the true relevance.
Another approach to content-based browsing has been mo-
tivated by our work with broadcast news retrieval, where
teletext transcriptions were used as indexing sources [2]. In-
dividual keyword hits are not displayed in this approach;
rather the message is considered as a series of overlapping
“windows,” consisting of a short, fixed interval. A query-
window matching score can be computed for each interval,
just as for an entire document. The window scores can then
be displayed such that the higher-scoring windows appear
brighter and more prominent. The resulting display is essen-
tially a “low-pass filtered” version of the putative hits, and
is thus less time-precise but less cluttered as well, and au-
tomatically incorporates the term weighting factors so that
less-discriminating terms are not given undue importance. A
similar approach is adopted in the “TileBars” data visualisa-
tion tool developed by Hearst [6], which displays document
length and term relevance in the initial ranked list. This
type of output could easily be incorporated into our ranked
list display, allowing users to make a more informed choice
of documents prior to browsing.

Video Cues

For the video mail application, we have focussed on the au-
dio stream because that is where nearly all information of
practical interest will be found. It is, in general, much more
difficult to extract useful information from a video signal.
Image retrieval is a challenging task and many problems re-
main unsolved. Most work does not extend much beyond
simple measures of colour or shape similarity [24, 1], al-
though there is promising work based on wavelet analysis [8].
While efforts in face and gesture recognition are in progress
at ORL and elsewhere [22], less sophisticated analyses can
still yield information helpful for browsing. For example, a
Medusa video analyser module can detect the activity in a
video stream; one application uses this activity information
to automatically select a preferred video stream from several
available in each room. One simple strategy is to determine
the “activity” of a video stream from an estimate of frame-
to-frame difference. A large, impulsive value can indicate a
new scene or camera, while moderate values over a period
of time indicate subject or camera motion. Near-zero values
mean a static (and therefore uninteresting) image. Though
not yet implemented, current plans are to add this activity
information to the browser, enabling automatic detection of
a camera or scene change. In this case, a “thumbnail” image
of the new view would be displayed on the timeline. Also,
active areas could be highlighted to indicate that something
of potential interest is occurring in the video stream.

FUTURE WORK AND CONCLUSIONS

The work presented here is only the latest step towards gen-
eral audio and video retrieval. Previous work, by the VMR

I This is particularly true in the video mail environment, where
the vast majority of messages are just “talking head” images from
a small pool of users, against static backgrounds.



group and by others, has shown that spoken document re-
trieval using speech recognition is becoming practical [12, 9].
Future work in this project will be to integrate different au-
dio index sources available from large vocabulary recogni-
tion and conventional as well as lattice-based word spotting
[14, 13]. In addition, work will need to be done to make
the system robust to environmental noise, microphone dif-
ferences, accent variability, and telephone-bandwidth speech.
Another promising area is to use other types of audio in-
formation, such as speaker or music identification, to help
index multimedia streams [29]. In conclusion, this paper
presents useful methods of indexing audio and video sources,
and demonstrates a real-time audio retrieval application, al-
though still on a small scale. Much more work needs to be
done on scaling up, especially on handling large numbers
of documents and their correspondingly large lattices. But
as multimedia archives proliferate on the WWW and else-
where, technology like that presented here will be become
indispensable to locate, retrieve, and browse audio and video
information.
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