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Abstract

This paper presents recent results using statistics gen-
erated by a MMI-supervised vector quantizer as a
measure of audio similarity. Such a measure has
proved successful for talker identi�cation, and the ex-
tension from speech to general audio, such as music, is
straightforward. A classi�er that distinguishes speech
from music and non-vocal sounds is presented, as well
as experimental results showing how perfect classi�-
cation accuracy may be achieved on a small corpus
using substantially less than two seconds per test au-
dio �le. The techniques a presented here may be ex-
tended to other applications and domains, such as au-
dio retrieval-by-similarity, musical genre classi�cation,
and automatic segmentation of continuous audio.

Introduction

This paper presents a method of rapidly determining
the characteristics of audio samples, using a super-
vised tree-based vector quantizer trained to maximise
mutual information (MMI). Unlike other approaches
based on perceptual criteria (Pfei�er, Fischer, & Ef-
felsberg 1996; Wold et al. 1996; Blum et al. 1996;
Wyse & Smoliar 1995), this technique is purely data-
driven and makes no attempt to extract subjectively
\meaningful" acoustic parameters. Unlike hidden
Markov modelling, this method is computationally in-
expensive, yet is robust even with only a small amount
of test data. Thus classi�cation is rapid in terms
of both computational cost and the small amount of
test data needed to characterize the audio. Simi-
lar measures have proved successful for talker iden-
ti�cation and clustering (Foote & Silverman 1994;
Foote 1997). This paper presents a classi�er that dis-
tinguishes speech from music and non-vocal sounds.
This has immediate applications for speech recogni-
tion: in general, there is no guarantee that a given
multimedia audio source contains speech, and it is im-
portant not to waste valuable resources attempting to
perform speech recognition on music or non-speech au-
dio.

The basic operation of the classi�er is as follows.
First, a suitable training corpus of audio examples
must be accumulated and parameterized into feature

vectors . The corpus must contain examples of the
kinds (classes) of audio to be discriminated between,
e.g. speech and music, or male and female talkers.
Next, a tree-based quantizer is constructed using the
methods of Section . This is a \supervised" operation
and requires requires the training data to be labeled ,
i.e. designating to which class each training example
belongs. This is all the human input required. The
tree automatically partitions the feature space into re-
gions which have maximally di�erent class populations.
Though this alone could be used as a classi�er, it will
not be robust as class distributions typically overlap a
great deal, and are generally inseparable. Rather, the
quantizer is used to generate a template that can be
used as a reference. This is done by quantizing the test
data for a particular class (by seeing in which partition
the quantizer places each datum), and constructing a
histogram of the resultant partition counts. A similar
histogram may be computed for a test audio �le, and
some measure of \distance1" computed between the
test histogram and each class reference. For a simple
classi�cation task, the unknown test audio is classi�ed
according to the most similar reference template.

Tree-based Quantization

Unlike the more common K-means vector quantiza-
tion (VQ), the tree-based quantization is supervised,
which means the feature space may be pro�tably dis-
cretized into many more regions than the conventional
minimum-distortion vector quantizers. In addition,
the tree-based method is arguably more robust in high-
dimensional feature space, and may be pruned to vary
the number of free parameters to better re
ect the

1\Distance" is used here in a very loose sense, as the
measures discussed may not be symmetric or satisfy the
Triangle Inequality.
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Figure 1: Audio template construction

amount of available enrollment data. Perhaps more im-
portantly, MMI-constructed trees can arguably handle
the \curse of dimensionality" better than a minimum-
distortion VQ, in part because only one dimension is
considered at each split. Dimensions that do not help
class discrimination are ignored, in contrast to a dis-
tortion metric which is always computed across all di-
mensions.

In practice, the audio classi�cation system works as
follows. Both test and enrollment speech is �rst param-
eterized into mel-scaled cepstral coe�cients (MFCCs)
plus an energy term. The speech waveform, sampled
at 16 kHz, is thus transformed into a 13-dimensional
feature vector (12 MFCC coe�cients plus energy) at
a 100-Hz frame rate. This parameterization has been
shown to be quite e�ective for speech recognition and
speaker ID, even though some speaker-dependent char-
acteristics (such as pitch) are discarded.

A quantization tree is grown o�-line, using as much
training data as practicable. Such a tree is essen-
tially a vector quantizer; discriminative training en-
sures that it attempts to label feature vectors from
di�erent classes with a di�erent label. To generate a
class template for subsequent identi�cation, training
data is quantized, and a probability density function
(pdf) is estimated by counting the relative frequencies
of each label. This pdf serves as a reference template
with which unknown data may be compared.

To identify an unknown data, a pdf is computed
from quantized test data in a similar manner. This
test template can be compared with those from the
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Figure 2: Mel frequency scaling (After Robinson 1995)

reference classes using one of any number of distance
measures; the \closest" reference template then iden-
ti�es the class of the test data. If the test data is not
guaranteed to be in one of the reference classes, a dis-
tance threshold may be set to reject data that does not
su�ciently resemble any reference model.

Supervised MMI Trees for quantization

The feature space is partitioned into a number of dis-
crete regions (analogous to the Voronoi polygons sur-
rounding VQ reference vectors) by a decision tree. Un-
like K-means reference vector estimation, the tree is
grown in a supervised fashion. Each decision in the
tree involves comparing one element of the vector with
a �xed threshold, and going to the left or right child de-
pending on whether the value is greater or lesser. Each
threshold is chosen to maximise the mutual informa-
tion I(X ;C) between the data X and the associated
class labels C that indicate the class of each datum.

Tree construction

Because the construction of optimal decision trees is
NP-hard, they are typically grown using a greedy strat-
egy (Breiman et al. 1984). The �rst step of the greedy
algorithm is to �nd the decision hyperplane that max-
imizes the mutual information metric. While other re-
searchers have searched for the best general hyperplane
using a gradient-ascent search (Anikst & others 1991),
the approach taken here is to consider only hyperplanes
normal to the feature axes, and to �nd the maximum
mutual information (MMI) hyperplane from the op-
timal one-dimensional split. This is computationally
reasonable, easily optimised, and has the advantage
that the search cost increases only linearly with di-
mension.
To build a tree, the best MMI split for all the train-

ing data is found by considering all possible thresholds
in all possible dimensions. The MMI split threshold is
a hyperplane parallel to all feature axes except dimen-
sion d, which it intercepts at value t. This hyperplane
divides the set of N training vectors X into two sets
X = fXa;Xbg, such that

Xa : xd � td (1)

Xb : xd < td: (2)
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Figure 3: nearest-neighbor VQ (left) and MMI tree (right) feature space partitions

This �rst split corresponds to the root node in the clas-
si�cation tree. The left child then inherits Xb, the set
of training samples less than the threshold, while the
right child inherits the complement, Xa. The splitting
process is repeated recursively on each child, which re-
sults in further thresholds and nodes in the tree. Each
node in the tree corresponds to a hyper-rectangular
region or \cell" in the feature space, which is in turn
subdivided by its descendants. Cells corresponding to
the leaves of the tree completely partition the feature
space into non-overlapping regions, as shown in Figure
3.
To calculate the mutual information I(X ;C) of a

split, consider a threshold t in dimension d. The mu-
tual information from the split is easily estimated from
the training data in the following manner. Over the
volume of the current cell, count the relative frequen-
cies:

Nij = Number of data points in cell j from class i

Nj = Total number of data points in cell j

=
X
i

Nij

Ai = Number of data points from class i : xd � td

In the region of cell j, de�ne Pr(ci) to be the prob-
ability of class i and Pr(ai) as the probability that a
member of class i is above the given threshold. These
probabilities are easily estimated as follows:

Pr(ci) �
Nij

Nj

; Pr(ai) �
Ai

Nij

: (3)

With these probabilities, the mutual information
given the threshold may be estimated in the follow-
ing manner (for clarity of notation, conditioning on

the threshold is not indicated):

I(X ;C) = H(C)�H(CjX) (4)

= �
X
i

Pr(ci) log2 Pr(ci) +
X
i

Pr(ci)H2 (Pr(ai)) (5)

� �
X
i

Nij

Nj

log
2

Nij

Nj

+
X
i

Nij

Nj

H2

�
Ai

Nij

�
; (6)

where H2 is the binary entropy function

H2(x) = �x log
2
(x)� (1� x) log

2
(1� x): (7)

Equation 6 is a function of the (scalar) threshold t, and
may be quickly optimised by either an exhaustive or
region-contraction search.

This splitting process is repeated recursively on each
child, which results in further thresholds and nodes
in the tree. At some point, a stopping rule decides
that further splits are not worthwhile and the split-
ting process is stopped. The MMI criterion works well
for �nding good splits, but is a poor stopping condi-
tion because it is generally non-decreasing. (Imagine a
tiny cell containing only two data points from di�erent
classes: any hyperplane between the points will yield
an entire bit of mutual information. Bigger cells with
overlapping distributions generally have less mutual in-
formation.) Also, if the number of training points in
a cell is small, the probability estimates for that cell
may be unreliable. This motivates a stopping metric
where the best-split mutual information is weighted by
the probability mass inside the cell lj to be split:

stop(lj) =

�
Nj

N

�
Ij(X ;C) (8)
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Figure 4: Audio classi�cation using histogram tem-
plates

where N is the total number of available training
points. Further splits are not considered when this
metric falls below some threshold. This mass-weighted
MMI criterion thus insures that splitting is not con-
tinued if either the split criterion is small, or there is
insu�cient probability mass in the cell to reliably es-
timate the split threshold.

Tree-based Template Generation

The tree partitions the feature space into L non-
overlapping regions or \cells," each of which corre-
sponds to a leaf of the tree. Though the tree can
be used as a classi�er, by labeling each leaf with a
particular class. When classifying a su�cient amount
of class-labeled heterogeneous data, each leaf will get
data from a number of classes \routed" to it. By choos-
ing the most popular class, each leaf can be labeled
with the the class whose data is most likely to end up
there. Such a classi�er will not be robust, as in general
classes will overlap such that a typical leaf will contain
data from many di�erent classes. A better way to cap-
ture class attributes is to look at the the ensemble of
leaf probabilities from the quantized class data. A sec-
ond of data will result in 100 feature vectors (ignoring
window e�ects), and thus 100 di�erent leaf labels. If a
histogram is kept of the leaf probabilities, such that if,
say, 14 of the 100 unknown vectors are classi�ed at leaf
j then leaf j is given a value of 0.14 in the histogram.
The resulting histogram captures essential class qual-
ities, and thus serves as a reference template against
which other histograms may be compared.

Distance Metrics

Given data from an unknown source, a similar his-
togram may be estimated and compared with stored
templates from the reference classes. The closest

matching template then identi�es the unknown data.
Though it is not obvious how to choose an appropri-
ate distance measure to compare the templates, sim-
ple approaches work well in practice. Several distance
measures have been used in implementation. Given
two histograms p and q of length N , denote the ith
count of histogram p as p(i). Assuming histograms are

normalized
PN

i=1 p(i) = 1 (and thus a true pdf), the
following distance measures D(p; q) may be used:

� Euclidean distance

D2

E(p; q) =

NX
i=1

[p(i)� q(i)]
2

(9)

This measure treats the histograms as vectors in
N -dimensional space, and computes the L2 (Eu-
clidean) distance between them. Though there is
no true probabilistic justi�cation for this measure,
it is closely related to to the �2 measure, and was
used successfully for speaker ID in Foote 1997.

� Symmetric relative entropy

(pjjq)
4
=

NX
i=1

p(i) log
p(i)

q(i)
:

In general, (pjjq) 6= (qjjp), so

DRE(p; q)
4
=

1

2
[(pjjq) + (qjjp)] :

This metric, (also called the information divergence
or Kullback-Liebler distance), may exaggerate the
di�erence between histograms because of the non-
linear dependence on the probability quotients. It
also may not be robust to sparse histograms from
small amounts of data. DRE was used for speaker
ID and clustering in Foote & Silverman 1994.

� Correlation distance

DC(p; q) =

NX
i=1

p(i)q(i) (10)

This is the distance metric used for the experiments
of Section . This metric has the helpful property
that zero histogram counts do not contribute to the
measure, and thus it may be more robust to sparse
histograms constructed from small data amounts.
Note that if the histograms are considered vectors,
this measure is similar to the \cosine distance" of
information retrieval if the correlation is normalized
by the product of the L2 norms of the histograms
(Salton & Buckley 1987).



/sounds/bells/bellTower5.2notes.au

/sounds/bells/bellTower6.au

/sounds/bells/bellTower7.au

/sounds/crowds/crowd.au

/sounds/crowds/largeCrowd.au

/sounds/crowds/restaurant.au

/sounds/crowds/sidewalk.au

/sounds/laughter/laughterFemale1.au

/sounds/laughter/laughterFemale2.au

/sounds/laughter/laughterFemale3.au

/sounds/laughter/laughterYoungMale.au

/sounds/laughter/laughterYoungMale2.au

Table 1: example Muscle Fish sound classi�cation hi-
erarchy (after Wold 1996)

Class No. �les Tot. length (s)

Male speech (xm) 110 371.9
Female speech (xf) 18 75.8
Non-speech (fx) 43 101.7
Instrumental (ix) 44 191.3
Rhythmic (rx) 47 225.8

Table 3: Training data statistics

Because of the very small amount of test data used,
many histogram counts will be zero. Additionally, the
most populous histogram entries will often be those
corresponding to silence. Because neither zero-count
labels nor silence labels help to discriminate between
classes, the distance measure is computed only between
moderately populated histogram entries. This is done
by sorting the histogram computed by summing all
the reference templates, and �nding the 5th through
the 100th largest entries. All other entries are ignored
in the distance measure. Note that an individual tem-
plate has only 95 integer parameters, and is thus ex-
tremely compact.

Training data

Over 1000 \.au" �les were collected from the Internet
using the Lycos search engine, which has a provision
for retrieving only audio �les. A search request of \au"
was used to ensure both relatively random �le selection
as well as the desired \.au" format. The URL of each
�le was automatically parsed from the Lycos search
result and retrieved o�-line using the libwww-perl

package2.

2The extent to which this infringes the intellectual prop-
erty rights of the audio's creators/owners is not at all clear.
It is assumed here that using this data for research falls
squarely under the Fair Use clause of any copyright agree-

Class No. �les Avg. length (s)

Music 34 1.98
Male speech 17 0.61
Female speech 35 0.52
Percussion 30 1.71

Table 4: Test data statistics

Of these �les, 566 had the correct encoding, sam-
ple rate, and were unduplicated elsewhere in the set.
Each �le was auditioned and given a 2-letter code ac-
cording to the scheme of Table 2. For the purposes
of classi�cation, it was desired to obtain samples of
instrumental music (without singing, speech, or other
vocalizations3), thus audio �les designated \rx" and
\ix" were selected as training examples of the \mu-
sic" class, while �les with \xm" and \xf" (there were
insu�cient xc �les to warrant inclusion) served as ex-
emplars of the \speech" class. Table 3 shows the resul-
tant amounts of data, a little less than 1000 seconds in
total.

Quantization trees were constructed using the data
of table 3; each set of �les corresponding to each of the
�ve classes was labeled with the appropriate class. A
single tree with 127 leaves was used for the classi�ca-
tion experiments in the next Section. Note that more
detailed trees could be grown and pruned, or existing
trees could be pruned to have fewer leaves. This tree
was used to generate two templates, one for speech (by
generating a histogram from the xf and xm data) and
one for music (using the ix and rx data).

Test data

Test data was obtained (with permission) from the
Muscle Fish demonstration site (Wold 1996) because
it had been conveniently pre-classi�ed and thus needed
no auditioning. Table 1 shows the Muscle Fish classi-
�cation scheme. Three classes of audio �les were used
to test the distance measure automatic classi�cation:
plain speech from male and female talkers, music �les
(most containing sung vocals), and long-duration per-
cussion samples (e.g. cymbal crashes) as examples of
non-speech, non-music audio. Note that most of the
test music data had sung vocals, in contrast to the
training music data which was strictly instrumental.
Music samples were truncated at two seconds, while
the speech sample were single words of about 1/2 sec-
ond duration. Table 4 shows the number and average
length of the test �les used.

ment and is thus permitted, however wide-reaching new leg-
islation may change this; see http://www.ari.net/dfc/.

3Like those audible in \heavy metal."



Music component: Speech component:

i - music (not primarily rhythmic) v - non-speech, non-laughter vocalization

r - rhythmic/percussive music m - male speech

f - noise or non-vocal sound effect f - female speech

p - processed, reverbed or noisy c - child speech or baby

s - pitched singing or chanting l - laughter

x - no music or other component a - animal sounds

(x implies clean speech only) x - no speech or singing

Table 2: Training data classi�cation scheme

Experiments

Figure 5 presents a plot of the correlation distance DC

from the speech and music templates for each test au-
dio sample. A larger value indicates a higher correla-
tion, and thus more similarity. Though it is not visible
in the plot, there is a male speech data point (�) in
the cluster composed primarily of percussion samples
(*). Some things to note in Figure 5 :

� Data points from the di�erent classes are exception-
ally well-clustered, especially considering the short
duration (less than 2s) of the test samples.

� Male speakers and female speakers were reasonably
well-distinguished, even though the reference tem-

plates were constructed with speech from both gen-

ders . This is perhaps due to the imbalance be-
tween male and female speech in the template train-
ing data: there was nearly �ve times as much male
speech as female speech4.

� Distance from the speech template alone did not dis-
criminate well between the speech and music sam-
ples, undoubtedly because the music contained vo-
cals (speech-like attributes). The outlier music sam-
ple near [0.6, 0.9] is a particular excerpt of Nat King
Cole singing \Ain't Misbehavin' " that has only a
faint string accompaniment, and is thus mostly vo-
cal in nature.

� Distance from the music template, however, did an
excellent job of discriminating music from speech
and percussion samples. A simple threshold of
DC = 0:5 would correctly identify all test samples
as music or non-music (speech/percussion).

� Except for the one male speech outlier previously
mentioned, distance from the speech template would
serve to discriminate speech from percussion sam-
ples. This is notable as no instances of percussion

4The author realizes this is not gender-neutral but ar-
gues that this only re
ects the existing bias on the Internet.
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Figure 5: Similarity distances to speech and music tem-
plates

were used to train either the speech or music tem-
plates (though there were some percussive sounds in
the fx data used to train the tree).

Conclusions and Future Directions

An e�ective method for audio classi�cation has been
presented, showing that useful identi�cation can be
performed with a surprisingly small amount of data.
The distance measure as described here is useful as
a general measure of audio similarity, and could be
applied to retrieving audio documents by similarity:
documents could be ranked by their distance to an ex-
ample audio template. Given the very modest storage
requirements of the templates, this would be practical
for even extremely large archives.
This technique o�ers perhaps a way to measure sub-

jective perceptual qualities of sounds, often described
in terms like \brightness" and \harmonicity." Rather
than de�ning and computing an actual measure of
these relatively subjective terms, it is possible to train



a template with a number of example �les deemed to
have (or not have) the given quality. The resultant
distance from that template may be used as a measure
of the particular quality, without having to explicitly

de�ne it .
Another more di�cult application is to automati-

cally segment multimedia sources by audio changes,
such as between di�erent speakers (Wilcox, Chen,
& Balasubramanian 1994; Roy & Malamud 1997),
pauses, musical interludes, fade-outs, etc. Because the
identi�cation technique works well enough on a sub-
second time scale, it could be used to detect these
changes simply by looking at the histogram gener-
ated by a short running window over a longer audio
stream. Comparing the window histogram with pre-
trained templates would allow detection and segmenta-
tion of speech, particular speakers, music, and silence.
Another approach would be to compute the distance
between the histogram of a short window with a longer
window, which might yield a measure of audio novelty
by the degree that short-term statistics di�er from a
longer-term average.
These would be the audio equivalents of scene or

camera changes, cuts, fades and wipes. It should be
possible to fuse data intelligently extracted from both
the visual and aural modes, yielding more complete
and robust information (about key frames, for exam-
ple) than is available from either mode alone. A video
corpus is being gathered at ISS for the purpose of seg-
mentation research.
A large motivation for using MFCC parameteriza-

tion for speech recognition is because the resulting fea-
tures are reasonably uncorrelated. Because the tree
quantizer can usefully model correlation, it may be
possible to �nd parameterizations that better capture
speaker-dependent features, especially when the im-
portance of additional features can be judged by the
tree. Additional features such as pitch or zero-crossing
rate (as in Saunders 1996) would probably aid classi-
�cation. An interesting possibility, yet unexplored, is
to use compressed audio (for example MPEG encoded
parameters) directly. This would eliminate the need
for the parameterization step as well as decoding and
would thus be extremely rapid.
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