
CHI Letters vol 2, 2 81

ABSTRACT
Hitchcock is a system that allows users to easily create cus-
tom videos from raw video shot with a standard video cam-
era. In contrast to other video editing systems, Hitchcock
uses automatic analysis to determine the suitability of por-
tions of the raw video. Unsuitable video typically has fast or
erratic camera motion. Hitchcock first analyzes video to
identify the type and amount of camera motion: fast pan,
slow zoom, etc. Based on this analysis, a numerical “unsuit-
ability” score is computed for each frame of the video.
Combined with standard editing rules, this score is used to
identify clips for inclusion in the final video and to select
their start and end points. To create a custom video, the user
drags keyframes corresponding to the desired clips into a
storyboard. Users can lengthen or shorten the clip without
specifying the start and end frames explicitly. Clip lengths
are balanced automatically using a spring-based algorithm.

Keywords: video editing, video analysis, video exploration,
automatic video clip extraction.

INTRODUCTION
Video cameras are becoming increasingly popular for both
home and office use. Video is commonly used to document
family events such as vacations, weddings, and graduation
ceremonies. In the office, video cameras are used to record
presentations, user studies and field work, and are often
taken on business trips to record people, places, and activi-
ties.

Furthermore, Digital Video (DV), a digital camcorder for-
mat, is becoming increasingly common. More and more
personal computers are able to interface with DV cameras
and have enough disk space to hold reasonable amounts of
video. We believe that the combination of high-quality digi-
tal video, cheap capture cards, low cost disk space, and
interest in creating video content for the Web will increase
the demand for editors that handle non-professional video
material.

It is difficult, however, to use this video after it has been
recorded. While people may view such videos once or
twice, they are typically left “in the bag,” since the interest-
ing parts are intermixed with longer, less interesting

regions. Further, such video is often of poor quality result-
ing from abrupt camera movement or too short or too long
views, making it uninteresting to watch while waiting for
the next interesting section. Although tools exist for editing
home video, most casual users find it difficult to use appli-
cations such as Adobe Premiere [1] or Apple’s iMovie [2].

In this paper, we describe a new approach for addressing the
problems non-professionals have in using existing video
editing tools. Our approach is to provide the user with an
interactive system for composing video that does not require
manual selection of the start and end points for each video
clip. The system analyzes the video to identify suitable
clips, and a set of editing rules is applied to select the initial
length of each clip. The user can then select clips, adjust
their lengths, and determine the order in which they will be
shown.

This process may be divided into several steps: The video is
first analyzed to determine camera motion and speed. Bad
video is typically characterized by fast or erratic camera
motion. Motion analysis is used to find segments of the
video, or clips, that are suitable for inclusion in the final
video. A keyframe for each suitable clip is displayed to the
user. We provide an interface that allows the user to browse
quickly through the keyframes of the entire raw video. The
user then selects the desired keyframes and organizes them
in a storyboard.

Hitchcock creates the final video automatically by concate-
nating the selected clips. Editing rules are used to optimize
the length of each clip to be included. These rules represent
the experience of a professional video producer and embody
heuristics about clip duration and transitions. After review-
ing the automatically generated video, the user can use the
storyboard interface to lengthen or shorten the individual
clips in cases where the rules yielded unwanted results.

We conducted a user study in which we gave DV cameras to
the participants to shoot some home video and had them
edit the video with Hitchcock. The study was completed
very recently so that only a few preliminary results are
reported in this paper.

In the next section, we discuss designs of video editing sys-
tems that use different levels of automation. After that, we
describe our approach for extracting clips from a video. We
then present a user interface that supports semi-automatic
video editing: the system offers a collection of clips that the
user can select, adjust in length, and place in a desired order.
We conclude with a discussion of the use of a spring-based

A Semi-automatic Approach to Home Video Editing
Andreas Girgensohn, John Boreczky, Patrick Chiu, John Doherty,

Jonathan Foote, Gene Golovchinsky, Shingo Uchihashi, and Lynn Wilcox
FX Palo Alto Laboratory
3400 Hillview Avenue

Palo Alto, CA 94304, USA
{andreasg, johnb, chiu, doherty, foote, gene, shingo, wilcox}@pal.xerox.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’00. San Diego, CA USA
 2000 ACM 1-58113-212-3/00/11... $5.00

CHI Letters vol 2, 2 82

algorithm for balancing the lengths of the output video
clips.

LEVELS OF AUTOMATION FOR VIDEO EDITING
There are aspects of the video editing process — selecting
appropriate clips, for example — that are best performed by
users. Other tasks, because of their tedious nature (e.g.,
selecting precise in and out points), are best done by the
computer. Commercial and research video editing and
abstracting tools, however, differ greatly in the amount and
nature of the automation and manual intervention used.
These systems can be classified by the amount of user inter-
action required to produce a final output. There are three
natural groupings based on this measure.

Mostly Manual
There are many video editing systems that provide the user
full control over the editing process, ranging from those
made for professional video editors to newer ones designed
for home users. None of these systems, however, performs
video analysis to support the editing process. Most systems
offer no assistance for selecting in and out points. Thus the
user must examine the video on a frame-by-frame basis.
Some home-user systems that support DV create an initial
take list based on the camera on/off points. However, users
need to trim undesirable material from the takes manually.

For amateurs, editing tools such as Adobe Premiere [1] or
In-Sync’s Speed Razor [11] are difficult to use, but with
effort can produce professional results. Simpler editing
tools, such as Apple’s iMovie [2] and JavuNetwork [12]
make it easy to select video takes and to arrange them in a
storyboard. Trimming the takes, however, requires finding
the in and out points for cutting. This is difficult even with
the simpler tools because video must be examined on a
frame-by-frame basis and only uniform sub-sampling is
provided. The effort required ensures that only important
videos are worth editing.

Fully Automatic
The other end of the spectrum removes all control from the
user. The CMU Informedia system [5, 18] creates video
skims that excerpt portions of a video based on text captions
and scene segmentation. In this system, all video is produc-
tion quality. Excerpts are selected automatically by analyz-
ing the associated close-caption text and finding important
passages. He et al. [10] create summaries of on-line training
video using associated presentation material (PowerPoint
slides), audio emphasis, and statistics from prior viewing.
Pfeiffer et al. [16] find interesting locations in movies using
audio analysis (e.g., finding gunshots). The MadCap project
[17] produces summaries of videotaped Xerox PARC
forums using presentation material and user indexing. All of
these systems automatically produce a final result that is not
easily changed by the user.

Semi-Automatic
In the middle ground are systems that automate some of the
editing tasks in an attempt to make it possible to work with
a larger class of video material.

The Intel home video abstracting system [15] allows a user
to select an input video and a desired duration. The system

chooses a small clip from each camera take based on the
audio energy. The system then creates a four-level cluster
tree of the video clips based on the recorded date and time.
It randomly removes subtrees at different levels to reach the
desired output video length. Based on the shooting time dif-
ference between adjacent clips, different video transitions
are used. This system produces a somewhat random abstract
that provides even coverage of the source material and
emphasizes clips with high audio levels. The only user input
is the total duration, and thus no control over which clips
appear in the output is possible, but may depend on the
genre of the video.

The Hitchcock system described in this paper allows a user
to specify the desired total length of the output video and
the lengths of the individual clips. The system presents the
video clips that are of sufficient quality and allows the user
to choose those to be included in the output. Hitchcock ana-
lyzes video to classify the frames of the video, and then
determines video in and out points based on the suitability
of the analyzed video material and the requested clip length.
The users have as much control over the editing process as
they want, but the tedious tasks of finding usable video clips
and selecting in and out points are performed automatically.

FINDING VIDEO CLIPS
Hitchcock supports the video editing process by automati-
cally detecting suitable clips in the raw video material and
by presenting them to the user for selection and adjustment.
To do so, it uses a number of heuristic editing rules to find
good clip boundaries. These editing rules are encapsulated
in a computational model that supports shortening and
lengthening of clips without requiring the user to specify
explicit in and out points.

Editing Rules
Experienced video editors have rules that reflect their edit-
ing decisions. We formalized these rules based on the expe-
riences of one of the authors who is a professional video
editor. These rules not only aid in the selection of in and out
points, but also embody contextual information. We have
identified a number of general rules for automatic editing in
Hitchcock:

• A clip should be neither too long nor too short.

• Clips with too fast camera movement should not be
included because they are difficult to watch and non-
informative.

• A clip should have a minimum degree of brightness.

These rules guide our selection of appropriate algorithms
for extracting clips from video takes. Additional or different
rules can be accommodated easily with our approach.

Unsuitability Score
We implemented some of the rules as a simple but still
expandable computational model that identifies useful clips
in video takes. The model incorporates brightness and cam-
era and object motion information extracted from the video,
and can handle user requests to shorten or lengthen particu-
lar clips without requiring the user to specify in and out
points explicitly.

CHI Letters vol 2, 2 83

As described above, camera motion is an important criterion
for determining clip boundaries. The camera motion needs
to be determined independently for each take. Takes are
based on on-off time stamps provided by the camera; when
dealing with digitized analog video, camera changes can be
approximated by comparing subsequent frames in the video.
We determine camera pan by computing the direction corre-
sponding to minimum RMS difference between adjacent
frames. The first difference is computed based on a shift of
32 pixels; the second based on 16; etc. After each step, we
continue in the direction that had the lowest RMS error in
the pixel comparison. We found that using a sliding window
of five video frames (1/6 second) for adding the detected
motion vectors led to the best results for classifying camera
motion into meaningful categories. We are currently work-
ing on a new approach that will detect camera zooms better.

We represent camera motion as a component of a single
unsuitability score for each video frame. To determine a
good mapping from the detected camera motion to a single
number, we examined video material from different sources
and classified the amount of camera motion into the subjec-
tive categories of good, acceptable, tolerable, or unaccept-
able. Using those observations, we grouped the amount of
horizontal and vertical pan and the amount of zoom into
several classes corresponding to those judgments. Vertical
pan had a stronger influence than horizontal pan on the per-
ceived unsuitability of a sequence of frames. We therefore
use a weighted average of horizontal and vertical pan with
more weight for the vertical component to represent those
factors. We set the range of the unsuitability score between
zero and one and divide that range evenly into the four cate-
gories described above. For mapping the categorized aver-
ages into the corresponding unsuitability values, the square
root function produces the best fit.

For determining unsuitability based on the brightness of a
video frame, we compute the fraction of the total pixels
above a brightness threshold. For the videos in our library,
we found that 20% of the pixels with at least 45% bright-
ness is sufficient for a suitable frame. For the unsuitability
score, we map the range between 0% and 20% linearly to a
decreasing unsuitability. We combine the two unsuitability
measures by taking the maximum.

Figure 1 shows a chart of a typical unsuitability score. In
addition to the brightness and camera motion discussed

above, other factors can contribute to the unsuitability score.
This approach is not limited to the visual domain. For exam-
ple, audio features could also be used to determine good
portions of a video clip. By including all these factors in a
single score, the clip segmentation and trimming can be per-
formed independently of the set of features used.

Determining Clip Boundaries
Most commercial systems for editing DV extract informa-
tion about takes from the video and visualize each take with
a keyframe. It is often beneficial to further subdivide takes
into clips based on camera motion and other factors. For
example, a take might contain two still portions separated
by a fast pan. In such a situation, it is better to have two
clips and to trim each of them independently rather than
attempting to manipulate the whole take. For the material
shot by the participants of a recently concluded user study,
our system segmented video takes into 2.8 clips on average.

We use the unsuitability score over the duration of a video
take to find one or more suitable clips with respect to our
criteria. By selecting clips that fall into “valleys” between
peaks of the unsuitability score, we have a portion of low
unsuitability that can be expanded into the higher areas if
needed. At the same time, these clips must meet the mini-
mum length requirement. We start by setting an unsuitabil-
ity threshold and then finding the peak for each part of the
unsuitability curve that is completely above the threshold.
Those peaks are our candidate clip boundaries. The vertical
dashed lines in Figure 1 indicate those boundaries. If a clip
between the candidate boundaries does not meet the mini-
mum length requirement (e.g., three seconds), we keep
merging it with its neighbor until the minimum length is
reached. The finer dashed lines in Figure 1 (e.g., at 35.2 sec-
onds) represent candidate boundaries that are too close to
their left neighbors so that they are not used as clip bound-
aries. Such a segmentation leads to clips with a region
below the unsuitability threshold in the middle section and
regions above the threshold on both sides (see Figure 2).

Depending on the requested total length of the final video
and the minimum clip length requirement, a smaller or
larger portion of the middle region can be selected for inclu-
sion in the video. For a given length of a clip to be selected,
the clip with the minimal area under the unsuitability curve
is chosen so that the total unsuitability of that clip is mini-
mized. We use a default length of five seconds for video
clips but we reduce that default length gradually to three

0

0.25

0.5

0.75

1

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

U
ns

ui
ta

bi
lit

y

Seconds

 Figure 1: Unsuitability Score with Clip Boundaries

0

0.25

0.5

0.75

1

39 40 41 42 43 44 45 46 47 48

 Figure 2: Selected Clip Portions

CHI Letters vol 2, 2 84

seconds for material of low quality. Requests for a larger
portion can push the selected region up into the “hills” of
the clip (see Figure 2). Instead of always using the clip with
the minimal area under the curve, we can apply the edit rule
that a clip should end with a still by pushing more into the
left hills because that reduces the unsuitability (and there-
fore the camera motion) at the end.

Using the approach described here, most of the suitable
material of a take will be included in the selected clips while
the unsuitable material is relegated to the clip margins that
will not be used unless the user lengthens the clip to the
maximum length. A clip will contain mostly unsuitable
material only if the take consists of unsuitable material. We
currently consider marking such clips in the user interface
or suppressing them entirely. We already suppress takes
shorter than the minimum clip length.

In the opposite case of a take consisting entirely of suitable
material, it might be necessary to perform an additional seg-
mentation after the determination of clip boundaries based
on peaks in the unsuitability score. For example, two stills
separated by a very slow pan might show very different
camera angles but would be kept together by a purely cam-

era-motion-based segmentation. For such cases, a color-his-
togram-based segmentation could further subdivide a take.

Early results of a recently concluded user study indicate that
users care more about the audio track than we expected. In
particular, they disliked clips starting and ending in mid-
sentence. We are currently integrating a silence detection
algorithm that will influence clip segmentation and trim-
ming so that clips start and end at sentence boundaries if
possible.

USER INTERFACE
Once clips have been determined, they need to be made
available to the user for inspection and inclusion in the out-
put window. The user interface for Hitchcock allows the
user to select the parts of the raw video to be included in the
final edit and to specify the order of the material. The inter-
face consists of two image-based displays (see Figure 3).
The top display lets users select clips from the raw video.
The bottom display lets the users organize the clips along
the timeline and change the lengths of the clips.

We currently support the use of clips from several videos by
specifying a list of video files instead of just a single one.
The collection of videos is treated as a single video where

 Figure 3: Video Editing User Interface

CHI Letters vol 2, 2 85

the video boundaries are considered to be camera changes.
In this setup, clips from different videos might be grouped
together in our clip selection interface described below. As
an alternative, we consider opening videos in sequence so
that the clip selection display only shows clips from a single
video while the output display contains clips from several
videos.

Presenting Clips
When we first envisioned our video editing system, we
planned to present all identified clips to let the users choose
among them. We did not consider, however, how many clips
we would have to show. The sample video (about 43 min-
utes) shown in the top display in Figure 3 contains 225
clips. If we wanted to show all clips in the same area with
the same size keyframes, it would require more than ten
pages in a scrollable window. After we tried to use such an
interface for a little while, we realized that it was too diffi-
cult to find the desired clips. We also noticed that several of
the clips looked similar to each other and decided to use that
fact.

We cluster all clips by the similarity of their color histo-
grams and place similar clips into the same pile. Each clip is
represented by one keyframe in a pile and the clips are
stacked in temporal order. The FotoFile system [14] uses a
similar clustering algorithm to present visually similar pho-
tographs in a Hyperbolic Tree but that approach does not
appear to scale up to a large number of images. The piles are
shown row-by-row in the time order of the first clip in each
pile. We provide a user-selectable option to only group
neighboring clips so that the display is completely in time
order. In this display, however, less-similar clips may be
grouped together. The Intel home video abstracting system
[15] clusters clips by recording time so that clips recorded
on different days are more distant than those recorded dur-
ing the same hour. We plan adding that and other distance
measures as user-selectable options.

The number of piles is determined by the available window
area. Resizing the window changes the number of piles.
Because we use a hierarchical clustering method that creates
a binary cluster tree, we can select exactly as many clusters
as we have piles by cutting through the cluster tree at the
corresponding level. As expected, the use of a larger win-
dow with room for more piles leads to more intuitive results
where truly similar images are grouped together. For our
sample video, we had very good results with 30 piles.

When the user points at a pile with the mouse, the timeline
above the piles shows the coverage of the clips in the pile
(dark area) as well as the start time of the clip (triangle)
under the mouse (see Figure 4). Furthermore, the image
under the mouse is moved to the top to reveal its content.
Other images in the pile are partially visible at the bottom-
right corner. This type of display is similar to the one used
in STREAMS [6], where the edges of video frames are
shown over time. Because the images used in our display
are not adjacent in time, we show more than just a one-pixel
edge. If there are only a few images in the pile, we use all
the available space rather than visualizing the height of the
pile in perspective (the right pile in Figure 4). We also do
not show more than five images in a pile. For large piles, we
only show the top images and add one or two dark rectan-
gles to indicate that there are a few more or many more
images, respectively (the left pile in Figure 4).

To see the additional images in a pile, the user can expand
the pile by clicking on it. The current display is faded out
and the images of the pile are shown in an area in the middle
of the faded out display (see Figure 5). By still showing the
main display as a faded out background, the user is provided
with a context for the drill-down browsing. Consequently,
the user is less likely to get lost in exploring a pile. The
expanded pile is marked by a border that can be seen in the
faded out display (left margin in Figure 5). The timeline dis-
plays the coverage of the expanded view in light gray and
the coverage of the pile in a darker color as before. This
interaction style for exploring additional detail is similar to
the one used in our manga video summarization approach
[4]. The difference is that we need to provide access to
every clip in the video for our editing system whereas the
manga summary only attempts to present an overview of the
video and access points to some interesting portions.

As shown in Figure 5, the display of the expanded pile
might contain piles itself. Those piles can be expanded in
turn (see Figure 6). The previously expanded display is now
faded out; the main display is faded out even more. Taskiran

 Figure 4: Flipping Through Images in a Pile

 Figure 5: Expanding a Pile of Video Clips

CHI Letters vol 2, 2 86

et al. [19] describe a similar cluster-based hierarchical
browsing approach that supports searches in a video data-
base instead of providing access to all the clips in a video,
but the interface they describe makes it easy to become dis-
oriented in the matrix of keyframes because it does not
show the context from which drill-down occurred, and does
not show the relative amount of information represented by
each keyframe until that keyframe is selected.

Expanded displays can be collapsed one or more levels by
clicking on the corresponding faded out area. We believe
that this interaction technique is more intuitive and efficient
than, for example, the use of a close box. After an expanded
pile is collapsed again, it is still marked by a border so that
users do not lose their place in the display. The interaction
techniques described here are based on lessons learned from
a user interaction study of our manga summary [4].

To determine whether a clip is really suitable for the output
video, users can click on the corresponding keyframe to
play that video clip (see Figure 7). Only the clip is played

but the user can clear the in and out points to explore the
area around the clip. In our current implementation, we use
the infrastructure of our MBase system [8] that lets us play
MPEG and RealVideo files. Our player presents the unsuit-
ability score as a grayscale timeline (that looks like a bar
code in Figure 7). We are considering adding a zoom option
for that display so that one can better judge the suitability of
a short video clip.

Storyboard Timeline
The second interface display is a storyboard timeline for
composing the output video. The user drags keyframes from
the selection display and places them along the timeline. To
indicate that a clip has been used, it is framed by a purple
border in the selection window (similar to a visited link in a
Web browser). The keyframes can be reordered by dragging
them to different points in the timeline. Figure 8 shows two
designs for that timeline. The first design saves horizontal
space by staggering the images in two rows. Because of the
saved horizontal space, less scrolling is required to see the
whole timeline. The images are slightly overlapped to make
the time order more obvious. The second design places all
images in a single row. Our pilot users had strong prefer-
ences for one or the other design so that we provide both
designs as a user-selectable option.

In both designs, the size of an image corresponds to the
length of the clip. A handle in the corner of each image
allows the user to resize the image and thereby to modify
the length of the clip. Minimum and maximum length con-
straints are maintained by limiting the sizes of the key-
frames. Early results of a recently concluded user study
indicate that hard lower and upper limits of three and ten
seconds, respectively, are not well received. In response, we
set a much smaller lower limit (0.7 seconds) and no upper
limit. The color of the resize frame turns red for clip lengths
outside the recommended range of three to ten seconds. The
mapping between image sizes and clip length becomes loga-
rithmic for lengths longer than ten seconds to avoid
extremely large images.

Once the representative keyframes have been selected and
placed in the correct order and size in the storyboard inter-
face, Hitchcock automatically determines the appropriate in

 Figure 6: Repeatedly Expanding Piles

 Figure 7: Playing a Video Clip

 Figure 8: Two Storyboard Designs

CHI Letters vol 2, 2 87

and out points for each clip to be included in the final cus-
tomized video. The completed video can be played immedi-
ately by passing an edit decision list to the MBase media
player. Individual clips can be played as well by clicking on
the corresponding image. Once the user is satisfied with the
generated output video, the system can create it as a single
video file.

Supported Video Formats
Currently, we use the infrastructure of our MBase system
[8] to play MPEG and RealVideo files. The RealVideo play-
back could be used in cases where a user submits a raw
video to a Web-based service bureau and then edits the
video while looking at a streaming video proxy. The final
video could be downloaded by the user at the end. On the
other hand, streaming video is not as well suited for explor-
ing video clips because of the buffer time needed after each
skip. Video clips concatenated on-the-fly would not play
well with a streaming video approach. Here the user would
have to wait for the single video file to be created.

One scenario that we envision is Hitchcock for home use
with a DV camera connected to a PC. We expect DV to
become the common format for home video. Therefore we
plan to extend our infrastructure to support DV. We want
our users to be able to press one button to start the DV cap-
ture and video analysis. Unfortunately, most current DV
cameras only support real-time capture. Nevertheless, we
expect our system to be ready for editing immediately after
the capture is completed.

BALANCING CLIP LENGTHS
One significant problem users encounter when trying to
compose a video of a given length is how to trade off the
lengths of the various clips that make up the final result.
Traditional video editing software may let the user adjust
the in and out points of each clip, but then the user must
examine many clips to determine ones to contract or to
expand to produce the desired length.

This situation may be characterized by appealing to the the-
ory of Cognitive Dimensions [9]. Cognitive Dimensions is a
theory that describes interfaces and interactions on an
abstract level; it consists of about a dozen dimensions. The
clip editing operations described above may be character-
ized as scoring poorly on the dimensions of “hard mental
operations,” “role expressiveness,” “viscosity,” and “visibil-
ity.” We examine each in turn below.

• Hard mental operations. The user must keep track of clips
that may be shortened or lengthened outside the program
(on paper, for example). This may be time-consuming and
error prone.

• Role expressiveness. The user may not be able to deter-
mine easily the relationship between a given clip (as rep-
resented by a keyframe) and the overall video.

• Viscosity. A change in the length of one clip may require
the user to adjust the lengths of many other clips to keep
the final video within desired length constraints. Each
such change then requires many additional interactions to
implement and potentially to undo it.

• Visibility. The system does not provide any feedback
whether lengthening a particular clip to increase the over-
all video length will include fairly unsuitable material
while there are other clips with perfectly suitable unused
portions.

Our analysis and experience with this situation suggested
that a semi-automatic way of balancing clip durations to
produce a video of desired length could improve the usabil-
ity of the interface. While providing computer support for
this activity, we wanted the user to retain creative control.
To that end, we use the unsuitability score as the input for a
spring model in which each selected clip has an associated
spring that tries to keep it at an optimal length while dealing
with the global constraint of the desired total video length
(see Figure 9). The total video length is adjusted by the
strength of the global spring. Individual clips can be short-
ened or lengthened by modifying the strengths of their asso-
ciated springs. The system automatically selects the in and
out points for a clip based on the strength of the associated
spring.

Spring and force models have been used in several other
systems. The NeXT Interface Builder [20] allows users to
place springs around widgets that define how readily the
widget deforms when pressed or pulled by the window it
occupies. The FormsVBT dialog builder [3] employs a
TEX-based boxes-and-glue model for widget layout. The
TEX [13] typesetting system uses a numerical badness score
to represent the amount a line of text is stretched or shrunk
from the ideal. The system attempts to minimize the bad-
ness by changing the size of the glue joining the text. The
spring model has been used for two-dimensional layout of
objects (e.g., [7]). We apply similar techniques to the sim-
pler one-dimensional (timeline) case.

Determining the Function of Spring Strength
Each clip has an associated spring that expands and con-
tracts based on the force provided by the spring controlling
the total length of the produced video (see Figure 9). Each
spring of a clip has the same force applied to it so that the
clip length can be determined quickly. As discussed earlier,
for a given clip length the portion of the clip is selected that
has the minimal area under the unsuitability curve.

The force of the spring is related to the area under the
unsuitability curve. The force required to expand or to con-
tract the spring is determined from a neutral point at which
the spring is at rest. There are several possible approaches
for selecting that neutral point. One option is to set the neu-
tral length to be either zero or the minimal length of a clip

Clip 1 Clip 2 Clip 3 Clip 4

Total Length

 Figure 9: Springs for Clip and Total Length

CHI Letters vol 2, 2 88

(e.g., three seconds). In this case, springs always expand
and never contract. If the neutral length is equal to the mini-
mal length, that length constraint is enforced automatically.
Alternatively, the neutral length can be set to the maximum
length of the clip, i.e., everything between the clip bound-
aries. In that case, springs always contract and never
expand. As a third option, the neutral length can be the
“standard” clip length (e.g., five seconds). In that case, a
video without any constraints on the total length would con-
sist entirely of five-second clips. That approach can be mod-
ified for clips that do not have a suitable portion of that
length in which the unsuitability score stays below a thresh-
old (the area under the curve does not exceed a certain
value).

In selecting good clips, areas with low unsuitability scores
should be kept whereas areas with high unsuitability scores
should be given up easily. The force of a spring needs to be
consistent with that requirement. That means that for an
expanding spring, a small additional area under the curve
(low unsuitability) should generate a small force (easy to
pull out the spring) to get into that portion easily, whereas a
large additional area under the curve (high unsuitability)
should generate a large force. For a contracting spring, the
opposite is true. A small area under the curve should gener-
ate a large force (difficult to push the spring in) whereas a
large area should generate a small force. In the former case,
the force is proportional to the area below the curve,
whereas in the latter case, the force is proportional to the
area above the curve (see Figure 10). In both cases, chang-
ing the length of the spring is supposed to change its force
even if the area under/above the curve does not change (as
can happen with an unsuitability score of zero or one). To
address this concern, a constant is added to the unsuitability
score that provides a linear component for the spring force
function (see the area below zero in Figure 10).

For a given force, the length of the spring is determined via
table lookup. During the setup phase, the system loops
through all possible lengths for each clip and determines the
in and out points for the clip with the smallest area under the
curve. The complexity of this algorithm is O(n2) where n is
the length of the clip in units (e.g., frames). For specifying a
fixed total length (instead of modifying the strength of the
global spring), the system can iteratively decrease or
increase the force until the proper length is found. It might
not be possible to satisfy such a request because of the min-

imum or maximum clip lengths. In such a case, decreasing
or increasing the force will not change the total length past a
certain point.

Adjusting Spring Strengths
Users can modify the strength of the spring associated with
the total length of the produced video so that all individual
clips are shortened or lengthened accordingly. If users want
to emphasize or de-emphasize individual clips, they can
manipulate the strengths of their associated springs. The
effect of changing the spring strength for a clip depends on
the unsuitability score curve of that clip. For a constant
unsuitability score over the whole length of the clip, dou-
bling the strength of the spring will double the length of the
clip.

Integrating the Spring Model
Results of a survey conducted as part of a recently con-
cluded user study seem to indicate that balancing clip
lengths might not be that important to users. Having a video
of a given total length does not seem to be a common need.
We conclude from this observation that a spring model
implementation should stay in the background rather than
being shown explicitly. A text entry field for the total video
length should be the only visible control. Using that total
length, the system can iteratively modify the tension in the
collection of springs until the requested length is reached.
Rather than letting users modify the strengths of springs
associated with individual clips, the clip length users select
by resizing the image associated with the clip can be con-
verted to the corresponding spring strength that would pro-
duce a clip of that length. With this approach, the spring
model remains invisible to the user but still provides the
means to balance clip lengths for a requested total video
length while still allowing for adjustments of individual
clips.

Summary
The spring model is a promising approach for supporting
users in modifying the total output video length without
having to perform many adjustments of individual clip
lengths. The spring model has been added to our system but
it has not been used in a recently concluded user study.

CONCLUSIONS
In this paper, we have described a novel approach for the
support of home video editing. We use automatic video
analysis to identify suitable clips in the raw video material.
We provide a user interface that lets users explore and select
those clips easily. Rather than having to determine in and
out points for the clips, users can just drag keyframes repre-
senting the clips into a storyboard timeline and change the
order and lengths of the clips. For a given length of a clip,
Hitchcock automatically determines the appropriate in and
out points.

We also proposed an approach for helping users balance clip
length of the edited video without having to adjust the
lengths of many individual clips. We represent the length of
each clip as a spring that contracts and expands as needed to
accommodate change requests for the length of the output
video. The force function of each spring is determined by

44.0

0

0.25

0.5

0.75

1

44.5 45.0 45.5 46.0 46.5 47.0 47.5

Neutral Length

 Figure 10: Determining the Spring Force

CHI Letters vol 2, 2 89

the underlying suitability of portions of a video clip so that
more suitable video material is preferred for inclusion in the
output video.

The system described in this paper will overcome some
important obstacles people currently have with editing their
home video. This is important as more and more people
own DV cameras and want to use PCs to create interesting
video presentations from their raw video material. Early
results of a user study show that users find it easy to interact
with the system and to edit their own home video. At the
same time, the study uncovered several conceptual and
usability issues that we are currently addressing. For exam-
ple, audio will play a significant role in determining clip
boundaries. We also work on new modes of navigation
among clips.

REFERENCES
1. Adobe. “Premiere.” http://www.adobe.com/products/

premiere/

2. Apple. “iMovie.” http://www.apple.com/imovie/

3. Avrahami, G., Brooks, K.P., and Brown, M.H. “A Two-
View Approach to Constructing User Interfaces.” ACM
SIGGRAPH ’89, pp. 137-146, 1989.

4. Boreczky, J., Girgensohn, A., Golovchinsky, G., and
Uchihashi, S. “An Interactive Comic Book Presentation
for Exploring Video,” in Proceedings of CHI 2000,
ACM Press, pp. 185-192, 2000.

5. Christel, M., Smith, M., Taylor, C. and Winkler, D.,
“Evolving Video Skims into Useful Multimedia
Abstractions,” in Human Factors in Computing Sys-
tems, CHI 98 Conference Proceedings (Los Angeles,
CA), New York: ACM, pp. 171-178, 1998.

6. Cruz, G. and Hill, R. “Capturing and Playing Multime-
dia Events with STREAMS,” in ACM Multimedia 94
Proceedings, ACM Press, pp. 193-200, 1994.

7. Fruchterman, T. and Reingold, E. “Graph Drawing by
Force-Directed Placement,” in Software Practice and
Experience, 21(11), 1129-1164, 1991.

8. Girgensohn, A., Boreczky, J., Wilcox, L., and Foote, J.
“Facilitating Video Access by Visualizing Automatic

Analysis,” in Human-Computer Interaction INTER-
ACT ’99, IOS Press, pp. 205-212, 1999.

9. Green, T.R.G., and Petre, M. “Usability Analysis of
Visual Programming Environments.” Journal of Visual
Languages and Computing, 7, 131-174, 1996.

10. He, L., Sanocki, E., Gupta, A., and Grudin, J. “Auto-
Summarization of Audio-Video Presentations”, ACM
Multimedia ’99, pp. 489-498, 1999

11. In-Sync. “Speed Razor.” http://www.in-sync.com/

12. Javu Technologies. “JavuNetwork.”
http://www.javu.com/

13. Knuth, D., The TEXbook, Addison Wesley, 1984.

14. Kuchinsky, A., Pering, C., Creech, M.L., Freeze, D.,
Serra, B., and Gwizdka, J. “FotoFile: A Consumer Mul-
timedia Organization and Retrieval System,” in CHI 99
Conference Proceedings, ACM Press, pp. 496-503,
1999.

15. Lienhart, R. “Abstracting Home Video Automatically,”
ACM Multimedia 99 Proceedings (Part 2), pp. 37-40,
1999.

16. Pfeiffer, S., Lienhart, R., Fischer, S. and Effelsberg, W.,
“Abstracting digital movies automatically,” in Journal
of Visual Communication and Image Representation,
7(4), pp. 345-353, December 1996.

17. Russell, D. “A Design Pattern-Based Video Summari-
zation Technique Moving from Low-Level Signals to
High-Level Structures.” In Proceedings of the Thirty-
Third Annual Hawaii International Conference on Sys-
tem Sciences (HICSS-33), pp. 84, 2000.

18. Smith, M. and Kanade, T., “Video Skimming and Char-
acterization through the Combination of Image and
Language Understanding Techniques,” in Proceedings
of Computer Vision and Pattern Recognition, pp. 775-
781, 1997.

19. Taskiran, C., Chen, J.-Y., Bouman, C.A., and Delp, E.J.
“A Compressed Video Database Structured for Active
Browsing and Search,” in ICIP’98, vol. 3, pp 133-137,
1998.

20. Webster, B.F. The NeXT Book. Addison-Wesley, 1989.

