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ABSTRACT

We present a framework for analyzing the structure of digital media streams. Though our methods work for
video, text, and audio, we concentrate on detecting the structure of digital music files. In the first step, spectral
data is used to construct a similarity matrix calculated from inter-frame spectral similarity. The digital audio
can be robustly segmented by correlating a kernel along the diagonal of the similarity matrix. Once segmented,
spectral statistics of each segment are computed. In the second step, segments are clustered based on the self-
similarity of their statistics. This reveals the structure of the digital music in a set of segment boundaries and
labels. Finally, the music can be summarized by selecting clusters with repeated segments throughout the piece.
The summaries can be customized for various applications based on the structure of the original music.

Keywords: Digital media and audio processing, video and audio segmentation, music and audio summarization
and thumbnails

1. INTRODUCTION

Recently, decreasing storage costs, increasing bandwidth, improved compression technology, and peer-to-peer file
sharing services have allowed many individuals to amass large collections of digital audio files. In a recent Ipsos-
Reid survey, more than half of consumers aged 25-34 have downloaded MP3 files onto home computers, storing
on average more than 700 files.! This is a substantial data management problem, and research and development
of tools supporting music database management and music-related e-commerce has become increasingly active.

Here we present an analytical framework to determine the structure of digital music streams. In particular, we
demonstrate techniques for music segmentation, segment clustering, and summarization based on self-similarity
analysis. Given structural characterizations of digital music files, appropriate summary excerpts and “retrieval
proxies” can help to automatically organize personal or commercial music collections.

Our methods depend on the analysis of a similarity matriz.>® The matrix contains the results of all possible
pairwise similarity comparisons between time windows in the digital stream. The matrix is a good way to
visualize and characterize the structure in digital media streams. Throughout, the algorithms presented are
unsupervised and contain minimal assumptions regarding the source stream. A key advantage here is that the
data is effectively used to model itself. The framework is extremely general, and should work on any ordered
media such as video or text as well as audio. In particular, we have demonstrated results on segmenting both
speech audio? and video streams® as well as music.

In this paper, Section 2 introduces similarity analysis and details how similarity matrices are constructed
from audio. We then describe how the audio is segmented using kernel correlation. Section 3 describes how
audio segments are clustered using a hierarchical similarity-based approach. The result is a comprehensive
structural characterization of audio structure, including the locations and durations of repeated segments. As
an example, the structure of a popular song is analyzed to determine repeated verses and refrains. The final
Section 4 describes how the structure just determined can be used to automatically construct a representative
music summary or “audio thumbnail”.



2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix

Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi:i=1,--- ,N} C IRP. Using a generic similarity measure, d : IR® x IR® — IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i,j):d('l)i7’l/'j) Z7.7:17 aN . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
v; and v; representing the spectrograms for sample times ¢ and j, respectively,
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There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

Aewp(Vi, V) = exp (deos(vi,v5) — 1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey” by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation

Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.® Consider a simple “song” having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 x 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard” kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.
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Figure 1. The left panel depicts the embedding of the linear media into the two dimensional similarity matrix. The right
panel shows a similarity matrix computed from the song “Wild Honey” by U2.

2.3. Processing in the lag domain

For segmentation, we need only calculate a diagonal strip of the similarity matrix with the width of the checker-
board kernel. Using a simple change of variables, we compute the N x K matrix S such that

S(i,l):S(i,H—l—{%J) i=1,---,N l=1,--- | K . (4)

We refer to [ as the lag, and compute S in the “lag domain” to reduce computation and storage requirements,
which can be substantial at high resolutions. Considering only the band of width K = 256 centered around the
main diagonal reduces the computational requirements by over 96% for a three minute song sampled at 20 Hz.
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Figure 2. Left: the Gaussian-tapered checkerboard kernel used for audio segmentation. Right: the time-indexed novelty
score produced by correlating the checkerboard kernel along the main diagonal of the similarity matrix of Figure 1.



3. SIMILARITY-BASED CLUSTERING

Many approaches to audio analysis start with a segmentation step followed by clustering. As above, we first
compute a partial time-indexed similarity matrix to detect audio segment boundaries. In a second step, we
use similarity analysis to efficiently cluster the detected segments. This will find repeated segments separated
by time, as well as repair any over-segmentation errors. Given segment boundaries, we can easily calculate a
full similarity matrix of substantially lower dimension, indexed by segment instead of time. To estimate the
similarity between variable length segments, we use a statistical measure.

We assume only that the audio or music exhibits instances of similar segments, possibly separated by other
segments. For example, a common popular song structure is ABABCAB, where A is a verse segment, B is
the chorus, and C is the bridge or “middle eight.” We would hope to be able to group the segments of this song
into three clusters corresponding to the three different parts. Once this is done, the song could be summarized
by presenting only the novel segments. In this example, the sequence ABC is a significantly shorter summary
containing essentially all the information in the song.

3.1. Clustering via similarity matrix decomposition

To cluster the segments, we factor a segment-indexed similarity matrix to find repeated or substantially similar
groups of segments. The Singular Value Decomposition (SVD) turns out to be a natural way to do this. (For
additional details on the SVD, see reference.” ) Clustering via factorized similarity matrices is a technique
originally developed for still image segmentation; for a survey see.® This work suggests that we simply apply the
SVD to the full sample-indexed similarity matrix to detect clusters of similar samples, like those visible in Figure
1. This is computationally intensive, however; a three minute song requires the computation and factorization
of a 3600 x 3600 similarity matrix. This motivates our approach of computing local novelty to find segments
followed by segment-level clustering. In this case, the SVD is computed for a similarity matrix whose dimension
is on the order of 10 x 10. This results in an overall computational savings of several orders of magnitude.

3.2. Statistical Segment Clustering

To cluster the segments using the SVD, we start with a set of segments {p1,--- ,pp} of variable lengths as
found above. Each segment is determined by a start and end time. We then compute a segment-indexed
similarity matrix, denoted Sg, which quantifies similarity between segments. For this, we compute the mean and
covariance for the spectral data in each segment. Intrasegment similarity is computed from the Kullback-Leibler
(KL) distance® between the Gaussian densities with the statistics of the segments. The KL distance between
the B-dimensional normal densities G(u;,%;) and G(u;,%;) is

1 Iy 1 _
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Here, Tr denotes the matrix trace. The KL distance is not symmetric, but it is common to construct a symmetric
variation from the sum of the two KL distances as

dicr(Gui, S)CG (1, 55)) = drr(Glus, S)IIG (1, 5)) + dier (G, 25) G (i, i) (6)
= %[Tr(EiE;1)+Tr(EiE;1)+ (7)

(s = )" (57 + 35 (i — )] = B

Thus, each segment p; is characterized by the empirical mean p; and covariance ¥; of its spectral data, and
the similarity between segments p; and p; is

dseg(pi; 1) = exp(—di1(G(ui, )G (1, 55))) - (8)

where dgeg(-,-) € (0,1] and is symmetric. These properties are desirable for the clustering technique detailed
below.
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Figure 3. Segment-indexed similarity matrix Ss computed for “Wild Honey” showing repeated segments. The original
song is 227 seconds long. The sample-indexed similarity matrix is 4540 x 4540, while the segment-level similarity matrix
is only Sg is 11 x 11.

For clustering, we compute the inter-segment similarity between each pair of segments. This is embedded in
a segment-indered similarity matrix, Sg, analogous to the sample-indexed similarity matrices of Figure 1:

SS(i7j):dseg(piapj) Z7J:17 7P .

Sy is typically two orders of magnitude smaller than its sample-indexed counterpart. Figure 3 shows the segment
similarity matrix Sg for the song “Wild Honey” by U2. The segment boundaries used appear in Table 1. We
then compute the SVD of Sg:

Sg = UAV" . (9)

where U and V' are orthogonal matrices and A is a diagonal matrix whose diagonal elements are the singular
values of Sg: A;; = A;. The SVD implicitly decomposes Sg into a matrix sum.

Ss (i, 7) AU, p)V (7, p) (10)
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The terms in this sum are ordered by decreasing singular value, and hence, by the amount of structure in Sg for
which they account.

The individual terms in this matrix sum provide visualizations of the segment clusters, as shown in Figure

4. To cluster the segments, we sum the rows of the terms in the sum of (11):

P
bp(5) = Bp(ij) s pj=1,---,P . (12)

i=1

The values of b, (7) indicate the similarity of segment j to (all) the segments in the pt" segment cluster, represented
in (11) by B,,. Figure 5 shows by,--- ,bs for “Wild Honey”. The maximal vector indicates the cluster to which
each segment in the song is assigned. The terms B, are unit norm matrices scaled by A,. As a result, clustering



using the vectors of (12) favors terms with larger singular values, which correspond generally to the clusters
accounting for the most segments. In our example, the clusters corresponding to A; and Ay are the verse
and chorus clusters, respectively, each comprised of three segments. The clustering method is summarized in
Algorithm 1.

ALGORITHM 1. Segment Clustering

1. Calculate P x P segment-indezed similarity matriz Sg using (8).

2. Compute the SVD of Sg and the set of vectors {b; : i =1,---, P} per (12) ordered by decreasing singular
values.

3. Associate the it" segment with cluster ¢ such that

¢ = ArgMax b, ()
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Figure 4. The figure shows the first five terms in the SVD-based decomposition of Sg computed for “Wild Honey” per

(11).

Table 1 compares the automatic segmentation and clustering results to a manual segmentation determined
by the authors. The automatic and manual results show good agreement. The cluster corresponding to the the
largest singular value corresponds to the verse segments. The cluster labelled “intro” in the manual segmentation
is divided into two clusters (3 and 5) by the automatic algorithm. This is caused by the fact that the segments
of Cluster 5 don’t include bass or drum sounds, unlike those in Cluster 3.
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Figure 5. The bar graph shows the vectors b1, - - , b5 computed according to (12). The maximal vector is used to assign

each segment to a segment cluster using Algorithm 1.

Table 1. Segmentation results for “Wild Honey”.

Segmentation Results: “Wild Honey” by U2
Manual Segmentation Automatic Segmentation
Segment Label | Boundaries (Sec.) | Segment Label | Boundaries (Sec.)

Intro 0-9 Cluster 5 0 - 8.6275
Verse 10-40 Cluster 1 8.63 - 39.575
Chorus 41-55 Cluster 2 39.6 - 55.475
Intro 56-61 Cluster 3 55.5 - 62.075
Verse 62-93 Cluster 1 62.1 - 93.825
Chorus 94-124 Cluster 2 93.85 - 124.25
Intro 125-132 Cluster 3 124.275 - 131.325
Verse 133-162 Cluster 1 131.35 - 162.825
Bridge 163-178 Cluster 4 162.85 - 174.375
Chorus 179-208 Cluster 2 174.4 - 209.175
Intro 209-227 Cluster 5 209.20 - 227

4. AUTOMATIC SUMMARIZATION

In this Section, we explore ways to construct musical summaries from a song’s segments and clusters. Intuition
suggests that often-repeated segments like the verse or chorus would serve as a good summary of the song. We
consider a two stage approach. First we select the two clusters with the largest singular values. For each of
these clusters, we add the segment with the maximal value in the corresponding cluster indicator b; of (12) to
the summary. For dominant cluster ¢, this segment will have index j; such that

¥ = ArgMaxb;(j) . (13)
j=1,,P

For cluster selection, we have also experimented with the clusters with maximal off-diagonal elements, indicating
the segments that are most faithfully repeated in the song.



This is but one of many possible ways to integrate the inferred structural information with other criteria to
construct audio summaries. We could delete all repeated segments, thus ensuring that all the information in the
song is included. This is analogous to including one segment for each cluster. We could select a subset of these
segments to satisfy temporal constraints. We can also integrate knowledge of the ordering of the segments and
clusters, application-specific constraints, or user preferences into the summarization process.

We also use (13) and the segment ordering as a heuristic to predict that the cluster with the first occurring
segment is the verse cluster, and the second is the chorus cluster. For the case of “Wild Honey” the predicted
verse cluster was Segment 8 representing Cluster 1. The predicted chorus cluster was Segment 6 representing
Cluster 2. Selected additional examples may be reviewed on the web.!°

5. RELATED WORK
5.1. Music Summarization

Chu and Logan document two methods for music summarization in.'* The first method divides the piece into
uniformly spaced segments. Mel frequency cepstral coefficients (MFCCs) are computed for the digital audio.
The segments are then clustered by thresholding the symmetric KL measure of (7). The longest component of
the most frequent cluster is returned as the summary. Although this method resembles the present method,
there are some key differences. First, we use variable length segments to perform our clustering. As a result, we
do not weigh segments’ importance by the segments’ lengths, but rather by their frequency of repetition. Also,
our clustering is based on a matrix decomposition that does not require the use of a threshold. In the second
method, they apply a hidden Markov model to jointly segment and cluster the data. This technique relies on a
set of manually segmented training data. In contrast, our technique uses the digital audio to model itself for both
segmentation and clustering. Tzanetakis and Cook!? discuss “audio thumbnailing” using a segmentation based
method in which short segments near segmentation boundaries are concatenated. This is similar to “time-based
compression” of speech.!® In contrast, we use complete segments for summary, and we do not alter playback
speed. Cooper and Foote have also use similarity matrices for excerpting, without an explicit segmentation step.'®
The present method is far more likely to start or end the summary excerpts on actual segment boundaries.

5.2. Media Segmentation, Clustering, & Similarity Analysis

The segment clustering technique is an application of a method that has been studied in the context of still
image segmentation.® 14 A common application is segmenting pixels corresponding to foreground objects. In
that context, the spatial locations of a set of points in the image are detected. Using either a color, texture, or
spatial similarity measure, a similarity matrix is computed as in Section 2. In this case, the similarity matrix
is indexed according to the set of image locations of interest. The eigenvector/eigenvalue decomposition of the
similarity matrix is calculated. Ideally, the foreground and background pixels exhibit within-class similarity and
between-class dissimilarity. In this case, a threshold is applied to the eigenvector corresponding to the largest
eigenvalue to classify the pixels. There are several variations on this basic approach and extensions to n-ary
classification. Here, we are clustering time-ordered data. Gong and Liu have presented an SVD based method
for video summarization,'® where the SVD is used mainly as a dimension-reduction technique. This is a classical
statistical application of the SVD, e.g..!” They also perform segmentation by detecting significantly novel points
in the reduced-dimension space.

6. CONCLUSION

We have presented a comprehensive framework for media analysis based on self-similarity. This general approach
makes minimal assumptions regarding the content or structure of the source. Given an appropriate parameteri-
zation and distance measures, the approach is applicable to other media and data types such as video. A media
stream is segmented and segments are clustered to extract the structure and sequence in the work. We have also
proposed methods for summarizing popular music based on this characterization. In future work, we will use this
structural information for music information retrieval and genre classification. Shorter summaries that contain
the gist of longer works can usefully serve as “retrieval proxies,” where computationally-intensive indexing can
be performed on the summary rather than the longer work. Hopefully this will result in more rapid indexing



time at no loss in retrieval recall. Another application of this work includes rapidly scanning large collections of
music, for example on a consumer’s handheld MP3 player. By quickly skipping ahead to the next musical section,

or

playing only the chorus of a song in a “music scan” mode, we expect that these summaries will enhance a

user’s ability to locate desired musical information.

12.

13.

14.
15.

16.

17

REFERENCES

. Ipsos-Reid, “Digital Music Behavior Continues to Evolve,” press release, January 31, 2002. http://www.ipsos-

reid.com/media/dsp_displaypr.prot.cfm?ID_to_view=1414

. J. Eckman, et al. “Recurrence Plots of Dynamical Systems,” Europhys. Lett. 4, 973, 1987.
. K. Church and J. Helfman. “Dotplot: A Program for exploring Self-Similarity in Millions of Lines of Text

and Code,” J. American Statistical Assoc., 2(2):153-174, 1993.

. J. Foote, M. Cooper, and L. Wilcox. “Enhanced Video Browsing Using Automatically Extracted Audio

Excerpts,” Proc. IEEFE Intl. Conf. on Multimedia and Ezxpo, pp. 378-81, 2002.

. M. Cooper and J. Foote. “Scene Boundary Detection Via Video Self-Similarity Analysis,” Proc. IEEE

International Conference on Image Processing, pp. 378-81, 2001.

. J. Foote. “Automatic Audio Segmentation using a Measure of Audio Novelty,” Proc. IEEE Intl. Conf. on

Multimedia and Fxpo 1:452-455, 2000.
G. Strang. Linear Algebra and Its Applications. Harcourt, Barce, Jovanovich, 1988.

. Y. Weiss. “Segmentation Using Eigenvectors: A Unifying View,” Proc. IEEE Intl. Conf. on Computer

Vision, pp. 975-982, 1999.

. T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.
10.
11.

http://www.fxpal.com/media/musicsegsum.html

S. Chu and B. Logan. “Music Summary Using Key Phrases,” Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, 2000.

G. Tzanetakis and P. Cook. “Audio Information Retrieval (AIR) Tools,” Proc. International Symposium on
Music Information Retrieval, 2000.

L. Stifelman, B. Arons, and C. Schmandt. “The Audio Notebook: Paper and Pen Interaction with Structured
Speech,” Proc. ACM CHI 3(1):182-189, 2001.

D. Forsyth and J. Ponce. Computer Vision — A modern approach. Prentice-Hall, 2002.

M. Cooper and J. Foote. “Automatic Music Summarization via Similarity Analysis,” Proc. International
Symposium on Music Information Retrieval, pp. 81-5, 2002.

Y. Gong and X. Liu. “Video Summarization Using Singular Value Decomposition,” Proc. IEEE Intl. Conf.
on Computer Vision & Pattern Recognition, 2000.

. R. Duda and P. Hart. Pattern Recognition and Scene Analysis. John Wiley & Sons, 1973.



