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ABSTRACT

We present a methods for characterizing both the rhythm and
tempo of music. We also presentways to quantitatively measure the
rhythmic similarity between two or more works of music. This
allows rhythmically similar works to be retrieved from alarge col-
lection. A related application is to sequence music by rhythmic
similarity, thus providing an automatic “disc jockey” function for
musical libraries. Besides specific analysis and retrieval methods,
we present small-scale experiments that demonstrate ranking and
retrieving musical audio by rhythmic similarity.

1. INTRODUCTION

Recently, many computer users are amassing increasingly large
numbers of music files. The advent of compressed formats and
peer-to-peer file sharing services allows even casual usersto build
substantial digital music collections. An informa poll on the
“Slashdot” website (http://www.slashdot.org) indicated that 24%
of nearly 70,000 respondents had collected more than nine
gigabytes of MP3 format audio. At typical compression ratios, this
corresponds to roughly 150 hours of music, or several thousand
popular songs. While song retrieval by metadata (artist, song title,
album title) is well supported by current technologies, content-
based retrieval is not. We hypothesize that users would like to rank
music by rhythmic similarity for browsing and searching, and for
sequencing music played in the background. This functionality is
not well-supported by existing metadata; while there is often some
notion of “genre,” it is clear that there can be a wide variations in
the tempo or “feeling” of music even in the same genre. For exam-
ple, Amazon.com places recordings by Serge Gainsbourg, Cheap
Trick, and Peaches & Herb in the same “ pop rock” category.

We present audio analysis algorithms that can automatically rank
music by rhythmic and tempo similarity. Our assumption is that the
feeling or mood of amusical work is highly correlated with tempo
and rhythm, and that userswill find value in systems that can orga-
nize existing music collections or discover new music based on
similarity. It is hypothesized that a music vendor would find value
in a“find me more music like this’ service: even if it yields results
no better than random, users would likely listen to, and perhaps
purchase, music they would not have encountered otherwise.

Music in auser’s collection is analyzed using the “ beat spectrum,”
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a novel method of automatically characterizing the rhythm and
tempo of musical recordings [1]. The beat spectrum is a measure of
acoustic self-similarity as afunction of time lag. Highly structured
or repetitive music will have strong beat spectrum peaks at the rep-
etition times. This reveals both tempo and the relative strength of
particular beats, and therefore can distinguish between different
kinds of rhythms at the same tempo. Unlike previous approaches to
tempo analysis, the beat spectrum does not depend on particular
attributes such as energy, pitch, or spectral features, and thus will
work for any music or audio in any genre. In particular, the method
is gtill robust (if not very informative) for audio with little or no
rhythmic characteristics.

The beat spectrum is calculated for every music file in the user’s
collection. The result is a collection of “rhythmic signatures” for
each file. We present methods of measuring the similarity between
beat spectra, and thus between the original audio. Given a similar-
ity measure, files can be ranked by similarity to one or more
selected query files, or by similarity with any other musical source
from which a beat spectrum can be measured. This allows users to
search their music collections by rhythmic similarity, as well an
enable novel applications. For example, given a collection of files,
an application could sequence them by rhythmic similarity, thus
functioning as an “automatic DJ.”

2. RELATED WORK

Many researchers have made contributions to tempo tracking.
Influential early research was done by Dannenberg and Mont-Rey-
naud [3]. In thiswork, primarily intended for real-time use, a*“con-
fidence” score of a beat occurrence is updated from MIDI note-on
events. No audio analysisis performed.

Several approaches exist for estimating the tempo of recorded
music. Canonical work by Eric Schierer is described in [4], where
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Figure 1. Spectrogram of “Musica Si” excerpt

energy peaks across frequency sub-bands are detected and corre-
lated. This approach will work best on music with a strong percus-
sive element, that is, short-term periodic wideband sources such as
drums. Another approach is designed for music in 4/4 time with a
bass drum on the downbeat [7]. These systems universally attempt
to measure one dominant tempo, and are thus not robust to “beat
doubling” effects, where the tempo is migudged by afactor of two,
or confused by energy peaks that do not occur in tempo or are
insufficiently strong. Typically this is constrained by a number of
ad-hoc methods that include averaging over many beats, rejecting
out-of-band results, or Kalman filtering asin [6].

Work done at Musclefish, Inc. computes rhythmic similarity for a
system for searching a library of rhythm loops [8]. Here, a “bass
loudness time-series’ is generated by weighting the short-time
Fourier transform (STFT) of the audio waveform. A peak in the
power spectrum of this time series is chosen as the “fundamental”
period. The Fourier result is normalized and quantized into dura-
tions of 1/6 of a beat, so that both duplet and triplet subdivisions
can be represented. This serves as a feature vector for tempo-
invariant rhythmic similarity comparison. This approach works for
drum-only tracks (the application it was designed for) but is likely
to be less robust on music with significant low frequency energy
not due to drums.

An interesting system has been proposed by Dave Cliff of the HP
Research in Bristol, UK. This system is intended to serve as an
“Automatic DJ’ and covers both track selection and cross-fading
[9]. The system is designed for the relatively narrow genre of
dance music, where the tempo of musical works is relatively sm-
ple to detect because of its repetitive and percussive nature, and is
usually constant across awork. Cliff’s system for track selection is
based on a tempo “trajectory,” or afunction of tempo versus time.
This is quantized into time “slots’ based on the number of works
available. Both dots and works are then ranked by tempo, and
assigned in a 1:1 fashion -- for example, the second highest slot
gets the track with the second fastest tempo. Absolute tempos are
not considered, but thisis not a serious drawback as dance musicis
generally confined to alimited range of acceptable tempos.

Recent work at Princeton has resulted in a rhythmic characteriza-
tion called the “beat histogram.” Here, an autocorrelation is per-
formed on the amplitudes of wavelet-like features, across multiple
windows so that many results are available. Major peaks in each
autocorrelation are detected and accumulated in a histogram. The
lag time of each bin is inverted to yield atempo (bpm) axis for the
histogram. The result is a measure of periodicity versustempo. For
genre classification, features are derived from the beat histogram
including the tempo of the major peaks and amplitude rations

between them [5]. This approach is similar to the “beat spectrum”
presented here, in that both attempt to represent salient periodici-
ties versus lag time (the beat spectrum) or, equivalently, tempo (the
beat histogram). Our approach differs in that we compare the beat
spectradirectly, without relying on peak-picking or related features
which may be less than robust.

3. BEAT SPECTRUM CALCULATION

Details of the beat-spectra analysis are presented in [1]; we
include a short version here for completeness. The beat spectrum is
calculated from the audio using three principa steps. First, the
audio is parametrized into using a spectral or other representation.
This results in a sequence of feature vectors. Second, a distance
mesasure is used to find the similarity between all pairwise combi-
nations of feature vectors, hence timesin the audio. Thisis embed-
ded into a two-dimensional representation called a similarity
matrix. The beat spectrum results from finding periodicities in the
similarity matrix, using diagonal sums or autocorrelation. The fol-
lowing sections present each step in more detail.

3.1 Audio parameterization

The methods presented here are all based on the distance matrix,
which isatwo-dimensional embedding of the audio self-similarity.
Thefirst step isto parameterize the audio. Thisistypically done by
windowing the audio waveform. Various window widths and over-
laps can be used; in the present system windows (“frames’) are 256
samples wide, and are overlapped by 128 points. For audio sam-
pled at 16kHz, thisresultsin a 16 mS frame width and a frame rate
of 125 per second. A fast Fourier transform is performed on each
frame, and the logarithm of the magnitude of the result estimates
the power spectrum. The result is a compact vector of parameters
that characterizes the spectral content of the frame. Many compres-
sion techniques such as MPEG-II Layer 3 use a similar spectral
representation, which could be used directly in for a distance mea-
sure. Thiswould avoid the cost of decoding the audio and reparam-
eterizing, as in [12]. Note that the actual parameterization is not
crucial aslong as“similar” sounds yield similar parameters. Other
parameterizations could be used, including those based on linear
prediction, Mel-Frequency Cepstral Coefficient (MFCC) anaysis,
or psychoacoustic considerations.

3.2 Calculating frame similarity

Once the audio has been parameterized, it is then embedded in a 2-
dimensional representation. A (dis)similarity measure D(i,))
between feature vectors is calculated from audio framesi and j. A
simple measure is the Euclidean distance in the parameter space.
Another useful metric is the scalar (dot) product of the vectors.
This will be large if the vectors are both large and similarly ori-
ented. To remove the dependence on magnitude (and hence energy,
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Figure 2. Distance matrix visualization for

“Musica S” theme
given our features), the product can be normalized to give the
cosine of the angle between the parameter vectors. The cosine
measure ensures that windows with low energy, such as those con-
taining silence, can still yield alarge similarity score, which is gen-
erally desirable. Thisis the distance measure used here.

3.3 Distance M atrix Embedding

A distance matrix conveniently represents the similarity between
all possibleinstantsin asignal. Thisis done by embedding the dis-
tance measure in atwo-dimensional representation, as shown in the
figure on the front page. The matrix 8§ contains the similarity mea-
sure calculated for al frame combinations, hence time indexes i
and j such that the i ,jth element of 8 isD(i,j). In general, S will
have maximum values on the diagonal (because every window will
be maximally similar to itself); furthermoreif D is symmetric then
S will be symmetric as well.

S can be visudized as a square image such that each pixdl i, j is
given a gray scale value proportiona to the similarity measure
D(i,j), and scaled such that the maximum value is given the maxi-
mum brightness. The resulting image provides a visuaization of
the audio structure. Regions of high self-similarity appear as bright
sguares on the diagonal. Repeated sections will be visible as bright
off-diagonal rectangles. If the work has a high degree of repetition,
this will be visible as diagonal stripes or checkerboards, offset
from the main diagonal by the repetition time.The diagona line
a i = j indicates that each frame is maximally similar to itself.
Figure 2 shows an example similarity matrix derived from the
spectrogram of Figure 1. Note that the periodicity visible in the
spectrogram (slightly greater than one second) isalso visiblein the
similarity matrix. More details about the distance matrix embed-
ding can be found in [1].

To simplify computation, the similarity can be represented in the
“lag” domain L(i,j) wherethelag | = j—i. Thisis particularly
helpful here, as the similarity is not needed for all combinations of
i and j, only those within afew seconds of each other (thus small I).
This reduces the algorithmic complexity from O(n) for afull sim-
ilarity matrix to amuch more manageable O(n), and in practice the
beat spectrum may be computed several timesfaster than real-time.

beat spectral magnitude

-0.4

Figure 3. Beat spectrum of “Musica Si” example. Note
peak at periodicity slightly greater than one second.

3.4 Deriving the beat spectrum

Both the periodicity and relative strength of musical beats can be
derived from the similarity matrix. We call ameasure of self- simi-
larity as a function of the lag the beat spectrum B(l). Peaks in the
beat spectrum correspond to repetitionsin the audio. A simple esti-
mate of the beat spectrum can be found by summing S aong the
diagonal asfollows:

B(l) = z S(k, k+1)
kOR
Here, B(0) is simply the sum along the main diagona over some
continuous range R, B(1) is the sum along the first superdiagonal,
and so forth. An example of the beat spectrafor different tempos of
music is shown in Figure 4. Music with 120 beats per minute
(bpml) should have a strong beat spectral peak at alag of 0.5 s, as
indicated in the figure. A more robust estimate of the beat spectrum
comes from the autocorrelation of S:

B(k I)= ZS(i,j)S(i +kj+1)

i
Because B(K,!) is symmetrical, it is only necessary to sum over
one vaiable, giving the one-dimensional result B(l). This
approach has been shown to work well across a range of musical
genres, tempos, and rhythmic structures[1].

4. MEASURING RHYTHMIC SIMILARITY

We present methods to determine the similarity between beat spec-
tra computed from different musical works. Given two works, we
can compute two beat spectra B(1) and By(l); both are 1-dimen-
sional functions of lag timel. In practice, | is discrete and finite, so
an obvious approach isto truncate the beat spectrato some number
L of discrete values. This yields L-dimensional vectors, from
which the Euclidean or other distance functions can be computed.
Though there are many possible distance measures, it is not obvi-
ous that any will be at all correlated with perceptual differences.
Thusit will beimportant to show that small “distances’ correspond
to rhythmically similar music, and that larger distances are corre-
lated with decreasing rhythmic similarity. The following section
presents small-scal e experiments to demonstrate this.

Lin musical scores, beats per minute is often denoted “MM” for
Maélzel’s Metronome, after the eponymous inventor of the clock-
work metronome.
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Figure 4. Beat spectra of similar music at different tempos

4.1 Experiment 1:

In this experiment, we determine how well Euclidean distance
between beat spectra measures tempo difference. To isolate the
effect of tempo on the measurement, we generated different-tempo
versions of the identical musical excerpt (“ Tangerine” by Apostro-
phe Ess, © Sean Householder 2001). This is easily done using
commercially available music editing software, which can change
the duration of amusical waveform without altering the pitch. This
musical excerpt consists of 16 4/4 bars of live vocals and instru-
mentals over a rhythmic beat, and is thus far more realistic than a
synthesized MIDI redization. The origina excerpt was played at
120 beats per minute (bpm; also denoted MM). Ten tempo varia-
tions were generated at 2 bpm intervals from 110 to 130 bpm. Thus
the test corpus consists of 11 musical excerptsidentical save for the
tempo. It should be noted that a two bpm tempo difference is rather
subtle, and may not be perceptible to many listeners (a fact we
have exploited for awatermarking scheme). This audio data can be
found at: http://www.fxpal.com/people/f oote/musi cr/tempor.html

A first test of measuring beat spectral differenceisasimple Euclid-
ean distance between beat spectra. To this end, beat spectra were
computed for each excerpt, and the squared Euclidean distance
computed for all pairwise combinations. Figure 5 shows the result.
Each line shows the Euclidean distance between one source
excerpt and all other files. The source fileis easily identified asthe
tempo where each line has a distance of zero. This graphically
demonstrates that the Euclidean distance increases relatively
monotonically for increasing tempo differences. Thisindicates that
the Euclidean distance can be used to rank music by tempo. Of
course, thisis a highly artificial case in that examples of the same
music at different tempos are relatively rare. Stll, it serves as a
“sanity check” that the beat spectrum does in fact capture useful
rhythmic information. Our next experiments examine beat spectral
similarity across different kinds of music.

4.2 Experiment 2

The corpus for this experiment are 10-second excerpts taken from
theaudio track of “Musica Si,” a pop-music variety show produced
by RTVE (Spain), and available as item V22 of the MPEG-7 Con-
tent Set [2]. Thisis a good source for these experiments as it both
contains a variety of popular musical styles, and has been rel eased
under a copyright that allows for research use. Excerpts were 10
seconds long and are |abeled with the start time from the beginning
of the video. (Excerpt 15, taken five seconds into the start of the
theme music, isthe source for Figures 1, 2, and 3.) Table 2 summa-
rizes the data excerpted from the soundtrack (which again, can be
found at http://www.fxpal.com/peopl e/foote/musicr/tempor.html).
There were four songs that were long enough to extract multiple
ten-second samples. Each song is represented by three ten-second
excerpts, save for apop/rock song whose chorus and verse are each
represented by three excerpts respectively. Although judging rele-
vance for musical purposes is generally a complex and subjective
task, in this case it was fairly straightforward: each excerpt was
assumed to be relevant to other excerpts from the same tune, and
not relevant to all other excerpts. The one exception is that the
verse and chorus of the pop/rock song were markedly different in
rhythm and so are assumed to not be relevant to each other. Thus
we have three ten-second excerpts from each of five relevance
classes (three songs plus two song sections), for a tota of 15
excerpts.

The raw beat spectra were first processed in the following manner.
Each was normalized by scaling so the peak magnitude (at zero
lag) was unity. Next, the mean was subtracted from each vector.
Finally the beat spectra were truncated in time. Because the short-
lag spectrais similar across all files and thus not informative, the
first 116 ms was truncated. Also lags longer than 4.75 s were also
truncated. The result was a zero-mean vector having a length of
200 values, representing lags from 116 msto 4.75 s for each musi-
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Figure 5. Euclidean Distance vs. Tempo

cal excerpt. (The effect of varying the truncated regions was not
examined, and it is not unlikely that other values may result in bet-
ter retrieval performance.)

4.1.1 Euclidean Distance

Three different distance measures were used. The first was
straightforward squared Euclidean distance measure, or the sum of
the squares of the element-by-element differences between the val-
ues, as used in Experiment 1. For evaluation, each excerpt was
used as a query. Each of the 15 corpus documents was then ranked
by similarity to each of the 15 queries using the squared Euclidean
distance. (For the purposes of ranking, the squared distance serves
as well as the distance, as the square root function is monotonic.)
Each query had 2 relevant documents in the corpus, so this was
chosen as the cutoff point for measuring retrieval precision. Thus
there were 30 relevant documents for this query set. For each
query, documents were ranked by increasing Euclidean distance
from the query. Using this measure, 24 of the 30 possible docu-
ments were relevant (i.e. from the same relevance class), giving a
retrieval precision of 80%. (More sophisticated analyses such as
ROC curves, are probably not warranted due to the small corpus
size)

4.1.2 Cosine Distance

The second measure used is a cosine metric, similar to that
described in the previous section. This distance measure may be
preferable because it is less sensitive to the actual magnitudes of
the vectors involved. This measure proved to perform significantly
better than the Euclidean distance. Using this measure, 29 of the 30

documents retrieved were relevant, giving a retrieval precision of
96.7% at this cutoff.

4.1.3 Fourier Beat Spectral Coefficients

The final distance measure is based on the Fourier coefficients of
the beat spectrum, because they can represent the rough spectral
shape with many fewer parameters. A more compact representa-
tion is vauable for a number of reasons. for example, fewer ele-
ments speeds distance comparisons and also reduces the amount of
data that must be stored to represent each file. To this effect, the
fast Fourier transform was computed for each beat spectral vector.
The log of the magnitude was then determined, and the mean sub-
tracted from each coefficient. Because high “frequencies’ in the
beat spectra are not rhythmically significant, the transform results
were truncated to the 25 lowest coefficients. Additionally the
zeroth coefficient was ignored, as the DC component is insignifi-
cant for zero-mean data. The cosine distance metric was computed
for the 24 zero-mean Fourier coefficients, which served asthe fina
distance metric. Experimentally, this measure performed identi-
cally to the cosine metric, yielding 29 of 30 relevant documents or
96.7% precision. Note that this performance was achieved using an
order of magnitude fewer parameters.

Though this corpusis admittedly very small, thereis no reason that
the methods presented here could not be scaled to thousands or
even millions of works. Computing the beast spectrum is computa-
tionally quite reasonable and can be done several times faster than
real time, and even more rapidly if spectra parameters can be
derived directly from MP3 compressed data as in [12] and [13].
Additionally, well-known database organization methods can dra-
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Figure 6. Beat spectra of retrieval data set (see Table 1). Excer pt number 15
(bottom row) isthe example of Figure 3.

Table 1. Retrieval data set: 10-second excer ptsfrom “Musica S” video [2]

Index Time (mm:ss) | Song Title (approximate) Description Relevance Set
1 09:12 “Toto ParaMe’ acoustic guitar + vocals A
2 09:02 “Toto ParaMe” acoustic guitar + vocals A
3 08:52 “Toto ParaMe’ acoustic guitar + vocals A
4 07:26 “Never Loved You Anyway” pop/rock chorus B
5 06:33 “Never Loved You Anyway” pop/rock chorus B
6 06:02 “Never Loved You Anyway” pop/rock verse C
7 05:52 “Never Loved You Anyway” pop/rock verse C
8 05:30 “Never Loved You Anyway” pop/rock chorus B
9 04:53 “Never Loved You Anyway” pop/rock verse C

10 01:39 “Everybody Dance Now” dance + rap vocals D
1 01:29 “Everybody Dance Now” dance + rap vocals D
12 01:19 “Everybody Dance Now” dance + vocals D
13 00:25 “MusicaSi Theme” theme + vocals E
14 00:15 “MusicaSi Theme” theme + vocals E
15 00:05 “MusicaSi Theme” themeintro E
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matically reduce the search time. In particular, high-dimensiona
indexing techniques can hierarchicaly cluster beat spectral coeffi-
cients so that the search cost increases only logarithmically with
the number of documents.

5. ENHANCEMENTSTO THE ALGO-
RITHM

These similarity measures could be extended in several ways. For
example, it might be desirable to search for music with similar
rhythmic structure but differing tempos. In this case, the beat spec-
tracould be normalized by scaling the lag time. One method might
be to scale the lag axis of al beat spectra so that the largest peaks
coincide. Using the above distance measures on the scaled spectra
would find rhythmically similar music regardless of the tempo.
Because the beat spectra and its corresponding Fourier coefficients
inhabit a vector space, many common classification and machine-
learning techniques can be used, including both supervised and
unsupervised methods. For example, given example classes of
music, a statistical classifier can be constructed that might catego-
rize unknown music into the given classes or genres, as in [5].
Example classification methods include linear discriminant func-
tions, Mahaonobis distances, Gaussian mixture models, or non-
parametric methods like K-nearest neighbors. Unsupervised
clustering could automatically determine genre or other classifica-
tions.

6. OPTIMAL MUSIC SEQUENCING

Given a measure of rhythmic similarity, a related problem is to
sequence a number of music filesin order to maximize the similar-
ity between adjacent files. This alows for smoother ‘segues
between music files, and has severa applications. If the user has
selected a number of files to put on a CD or recording media of
limited duration. then the files can be arranged by rhythmic simi-
larity. For example, one method is to create a ‘template’ of works
with a particular rhythm and sequence, for example slow-moder-
ate-fast (The commercial Muzak™ service is known to vary the
tempo of its music in 15-minute cycles, as this has been shown to
improve worker productivity [10].) Given atemplate, an algorithm
can automatically sequence a larger collection of music according
to similarity to the template, possibly with a random element so
that the sequence is unlikely to repeat exactly.

A particular application of this paper isto automatically sequence a
selected number of musical works. We hypothesize that a satisfy-
ing sequence of arbitrary music can be achieved by minimizing the
beat-spectral difference between successive songs. This ensures
that song transitions are not jarring, for example following a partic-
ularly slow or melancholic song with a rapid or energetic one. In
this application, two beat spectra are computed for each work, one
near the beginning of the work and one near the end. The goodness
of aparticular transition can be inferred from the beat spectral dis-
tance between the ending segment of the first work and the starting
segment of the second. Given N works, we can construct a distance
matrix whose i,j" entry is the beat spectral distance between the
end of work i and the start of work j. Note that this distance matrix
is not symmetrical, because in general the distance between end of
work i and the start of work j is not identical to the distance
between work j's start and work i's end.

Thetask isnow to order the selected songs such that the sum of the
intersong distances is a minimum. In matrix formulation, we wish
to find the permutation of the distance matrix that will minimize
the sum of the superdiagonal. Though thisis effectively the Travel-

ling Salesman problem, A greedy algorithm will work to find area-
sonable sequence. Variations on this method include constraints
such as the sequence must start or end with a particular work.

7. CONCLUSION

We have presented an approach to finding rhythmically similar
music and audio.In contrast to other approaches, the beat spectrum
does not depend on assumptions such as silence, periodic peaks, or
particular time signatures in the source audio. Because it is based
on self-similarity, all that is necessary to detect rhythm isrepetitive
events (even silence) in the audio. (In fact, we expect these meth-
ods to work for non-music audio such as speech or industria
sounds if there were an application requiring rhythmic analysis.)
Practical applications include an “automatic DJ' for personal
music collections, and we are currently prototyping such a system.
We are aso investigating how well these methods scale to larger
collections of hundreds or thousands of songs. This system could
usefully be combined with other systems that retrieve music by
pitch or timbral similarity, such as [12]. Such a hybrid retrieval
engine might allow usersto trade off spectral and rhythmic similar-
ity to suit their particular information needs.
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